SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Karikari Thomas) ;hsvcat:1"

Sökning: WFRF:(Karikari Thomas) > Naturvetenskap

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Karikari, Thomas, et al. (författare)
  • An extensive plasmid library to prepare tau protein variants and study their functional biochemistry.
  • 2020
  • Ingår i: ACS chemical neuroscience. - : American Chemical Society (ACS). - 1948-7193. ; 11:19
  • Tidskriftsartikel (refereegranskat)abstract
    • Tau neurofibrillary tangles are key pathological features of Alzheimer's disease and other tauopathies. Recombinant protein technology is vital for studying the structure and function of tau in physiology and aggregation in pathophysiology. However, open-source and well-characterized plasmids for efficiently expressing and purifying different tau variants are lacking. We generated 44 sequence-verified plasmids including those encoding full length (FL) tau-441, its four-repeat microtubule-binding (K18) fragment, and their respective selected familial pathological variants (N279K, V337M, P301L, C291R and S356T). Moreover, plasmids for expressing single (C291A), double (C291A/C322A) and triple (C291A/C322A/I260C) cysteine-modified variants were generated to study alterations in cysteine content and locations. Furthermore, protocols for producing representative tau forms were developed. We produced and characterized the aggregation behavior of the triple cysteine-modified tau-K18, often used in real-time cell internalization and aggregation studies because it can be fluorescently labeled on a cysteine outside the microtubule-binding core. Similar to the wild type (WT), triple cysteine-modified tau-K18 aggregated by progressive -sheet enrichment, albeit at a slower rate. On prolonged incubation, cysteine-modified K18 formed paired helical filaments similar to those in Alzheimer's disease, sharing morphological phenotypes with WT tau-K18 filaments. Nonetheless, cysteine-modified tau-K18 filaments were significantly shorter (p=0.002) and mostly wider than WT filaments, explainable by their different principal filament elongation pathways: vertical (end-to-end) and lateral growth for WT and cysteine-modified respectively. Cysteine rearrangement may therefore induce filament polymorphism. Together, the plasmid library, the protein production methods, and the new insights into cysteine-dependent aggregation, should facilitate further studies and the design of anti-aggregation agents.
  •  
2.
  • Bellaver, B., et al. (författare)
  • Astrocyte reactivity influences amyloid-beta effects on tau pathology in preclinical Alzheimer's disease
  • 2023
  • Ingår i: Nature Medicine. - 1078-8956. ; 29:7, s. 1775-
  • Tidskriftsartikel (refereegranskat)abstract
    • Cross-sectional and longitudinal analyses of tau pathology in preclinical Alzheimer's disease reveal that tau tangles accumulate as a function of amyloid-beta burden only in individuals positive for an astrocyte reactivity biomarker. An unresolved question for the understanding of Alzheimer's disease (AD) pathophysiology is why a significant percentage of amyloid-beta (A beta)-positive cognitively unimpaired (CU) individuals do not develop detectable downstream tau pathology and, consequently, clinical deterioration. In vitro evidence suggests that reactive astrocytes unleash A beta effects in pathological tau phosphorylation. Here, in a biomarker study across three cohorts (n = 1,016), we tested whether astrocyte reactivity modulates the association of A beta with tau phosphorylation in CU individuals. We found that A beta was associated with increased plasma phosphorylated tau only in individuals positive for astrocyte reactivity (Ast(+)). Cross-sectional and longitudinal tau-positron emission tomography analyses revealed an AD-like pattern of tau tangle accumulation as a function of A beta only in CU Ast(+) individuals. Our findings suggest astrocyte reactivity as an important upstream event linking A beta with initial tau pathology, which may have implications for the biological definition of preclinical AD and for selecting CU individuals for clinical trials.
  •  
3.
  • Karikari, Thomas, et al. (författare)
  • International science education
  • 2019
  • Ingår i: Journal of Microbiology and Biology Education. - : American Society for Microbiology. - 1935-7877 .- 1935-7885. ; 20:1
  • Tidskriftsartikel (refereegranskat)
  •  
4.
  • Mila-Aloma, M., et al. (författare)
  • Plasma p-tau231 and p-tau217 as state markers of amyloid-beta pathology in preclinical Alzheimer's disease
  • 2022
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 28
  • Tidskriftsartikel (refereegranskat)abstract
    • A comprehensive comparison of Alzheimer's disease blood biomarkers in cognitively unimpaired individuals reveals that plasma p-tau231 and p-tau217 capture very early A beta changes, showing promise as markers to enrich a preclinical population for Alzheimer's disease clinical trials Blood biomarkers indicating elevated amyloid-beta (A beta) pathology in preclinical Alzheimer's disease are needed to facilitate the initial screening process of participants in disease-modifying trials. Previous biofluid data suggest that phosphorylated tau231 (p-tau231) could indicate incipient A beta pathology, but a comprehensive comparison with other putative blood biomarkers is lacking. In the ALFA+ cohort, all tested plasma biomarkers (p-tau181, p-tau217, p-tau231, GFAP, NfL and A beta 42/40) were significantly changed in preclinical Alzheimer's disease. However, plasma p-tau231 reached abnormal levels with the lowest A beta burden. Plasma p-tau231 and p-tau217 had the strongest association with A beta positron emission tomography (PET) retention in early accumulating regions and associated with longitudinal increases in A beta PET uptake in individuals without overt A beta pathology at baseline. In summary, plasma p-tau231 and p-tau217 better capture the earliest cerebral A beta changes, before overt A beta plaque pathology is present, and are promising blood biomarkers to enrich a preclinical population for Alzheimer's disease clinical trials.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy