SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Karlsson Ida) ;pers:(Karlsson Stefan)"

Sökning: WFRF:(Karlsson Ida) > Karlsson Stefan

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Berglin-Enquist, Ida, et al. (författare)
  • Murine models of acute neuronopathic Gaucher disease
  • 2007
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 104:44, s. 17483-17488
  • Tidskriftsartikel (refereegranskat)abstract
    • Gaucher disease (GD) is an autosomal recessive lysosomal storage disorder caused by mutations in the glucosidase, beta, acid (GBA) gene that encodes the lysosomal enzyme glucosylceramidase (GCase). GCase deficiency leads to characteristic visceral pathology and, in some patients, lethal neurological manifestations. Here, we report the generation of mouse models with the severe neuronopathic form of GD. To circumvent the lethal skin phenotype observed in several of the previous GCase-deficient animals, we genetically engineered a mouse model with strong reduction in GCase activity in all tissues except the skin. These mice exhibit rapid motor dysfunction associated with severe neurodegeneration and apoptotic cell death within the brain, reminiscent of neuronopathic GD. In addition, we have created a second mouse model, in which GCase deficiency is restricted to neural and glial cell progenitors and progeny. These mice develop similar pathology as the first mouse model, but with a delayed onset and slower disease progression, which indicates that GCase deficiency within microglial cells that are of hematopoietic origin is not the primary determinant of the CNS pathology. These findings also demonstrate that normal microglial cells cannot rescue this neurodegenerative disease. These mouse models have significant implications for the development of therapy for patients with neuronopathic GD.
  •  
3.
  • Berglin-Enquist, Ida, et al. (författare)
  • Successful Low-Risk Hematopoietic Cell Therapy in a Mouse Model of Type 1 Gaucher Disease
  • 2009
  • Ingår i: Stem Cells. - : Oxford University Press (OUP). - 1549-4918 .- 1066-5099. ; 27:3, s. 744-752
  • Tidskriftsartikel (refereegranskat)abstract
    • Hematopoietic stem cell-based gene therapy offers the possibility of permanent correction for genetic disorders of the hematopoietic system. However, optimization of present protocols is required before gene therapy can be safely applied as general treatment of genetic diseases. In this study we have used a mouse model of type 1 Gaucher disease (GD) to demonstrate the feasibility of a low-risk conditioning regimen instead of standard radiation, which is associated with severe adverse effects. We first wanted to establish what level of engraftment and glucosylceramidase (GCase) activity is required to correct the pathology of the type 1 GD mouse. Our results demonstrate that a median wild-type (WT) cell engraftment of 7%, corresponding to GCase activity levels above 10 nmoles/hour and mg protein, was sufficient to reverse pathology in bone marrow and spleen in the GD mouse. Moreover, we applied nonmyeloablative doses of busulfan as a pretransplant conditioning regimen and show that even WT cell engraftment in the range of 1%-10% can confer a beneficial therapeutical outcome in this disease model. Taken together, our data provide encouraging evidence for the possibility of developing safe and efficient conditioning protocols for diseases that require only a low level of normal or gene-corrected cells for a permanent and beneficial therapeutic outcome. STEM CELLS 2009; 27: 744-752
  •  
4.
  • Berglin-Enquist, Ida, et al. (författare)
  • Successful low-risk hematopoietic cell therapy in a mouse model of type 1 Gaucher disease.
  • 2008
  • Ingår i: - : Mary Ann Liebert Inc. ; , s. 1189-1190
  • Konferensbidrag (refereegranskat)abstract
    • Hematopoietic stem cell (HSC) based gene therapy offers the possibility of permanent correction for genetic disorders of the hematopoietic system. However, optimization of present protocols is required before gene therapy can be safely applied as general treatment of genetic diseases. In this study we have used a mouse model of type 1 Gaucher disease (GD) to demonstrate the feasibility of a low-risk conditioning regimen instead of standard radiation, which is associated with severe adverse effects. We first wanted to establish what level of engraftment and glucosylceramidase (GCase) activity is required to correct the pathology of the type 1 GD mouse. Our results demonstrate that a median WT cell engraftment of 7 % corresponding to GCase activity levels above 10 nmol/hr and mg protein was sufficient to reverse pathology within bone marrow (BM) and spleen in the GD mouse. Moreover, we applied non-myeloablative doses of busulphan as a pretransplant conditioning regimen and show that even WT cell engraftment in the range of 1-10% can confer a beneficial therapeutical outcome in this disease model. Taken together, our data provide encouraging evidence for the possibility to develop safe and efficient conditioning protocols for diseases that only require a low level of normal or gene corrected cells for a permanent and beneficial therapeutic outcome. ______________________________________________________________________________ Author contributions: I.B.E.: Conception and design, collection and assembly of data, data analysis and interpretation, manuscript writing; E.N.: Collection of data, data analysis and interpretation; J.-E.M.: Collection and assembly of data, data analysis and interpretation; M.E.: Collection and assembly of data, data analysis and interpretation; J.R.: Data analysis and interpretation, manuscript writing; S.K.: Conception and design, financial support, data analysis and interpretation, manuscript writing, final approval of manuscript.
  •  
5.
  • Burke, Derek G., et al. (författare)
  • Increased glucocerebrosidase (GBA) 2 activity in GBA1 deficient mice brains and in Gaucher leucocytes
  • 2013
  • Ingår i: Journal of Inherited Metabolic Disease. - : Wiley. - 0141-8955 .- 1573-2665. ; 36:5, s. 869-872
  • Tidskriftsartikel (refereegranskat)abstract
    • Lysosomal glucocerebrosidase (GBA1) deficiency is causative for Gaucher disease. Not all individuals with GBA1 mutations develop neurological involvement raising the possibility that other factors may provide compensatory protection. One factor may be the activity of the non-lysosomal beta-glucosidase (GBA2) which exhibits catalytic activity towards glucosylceramide and is reported to be highly expressed in brain tissue. Here, we assessed brain GBA2 enzymatic activity in wild type, heterozygote and GBA1 deficient mice. Additionally, we determined activity in leucocytes obtained from 13 patients with Gaucher disease, 10 patients with enzymology consistent with heterozygote status and 19 controls. For wild type animals, GBA2 accounted for over 85 % of total brain GBA activity and was significantly elevated in GBA1 deficient mice when compared to heterozygote and wild types (GBA1 deficient; 92.4 +/- 5.6, heterozygote; 71.5 +/- 2.4, wild type 76.8 +/- 5.1 nmol/h/mg protein). For the patient samples, five Gaucher patients had GBA2 leucocyte activities markedly greater than controls. No difference in GBA2 activity was apparent between the control and carrier groups. Undetectable GBA2 activity was identified in four leucocyte preparations; one in the control group, two in the carrier group and one from the Gaucher disease group. Work is now required to ascertain whether GBA2 activity is a disease modifying factor in Gaucher disease and to identify the mechanism(s) responsible for triggering increased GBA2 activity in GBA1 deficiency states.
  •  
6.
  • Farfel-Becker, Tamar, et al. (författare)
  • No evidence for activation of the unfolded protein response in neuronopathic models of Gaucher disease
  • 2009
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 18:8, s. 1482-1488
  • Tidskriftsartikel (refereegranskat)abstract
    • Gaucher disease (GD), the most common lysosomal storage disorder (LSD), is caused by defects in the activity of the lysosomal enzyme, glucocerebrosidase, resulting in intracellular accumulation of glucosylceramide (GlcCer). Neuronopathic forms, which comprise only a small percent of GD patients, are characterized by neurological impairment and neuronal cell death. Little is known about the pathways leading from GlcCer accumulation to neuronal death or dysfunction but defective calcium homeostasis appears to be one of the pathways involved. Recently, endoplasmic reticulum stress together with activation of the unfolded protein response (UPR) has been suggested to play a key role in cell death in neuronopathic forms of GD, and moreover, the UPR was proposed to be a common mediator of apoptosis in LSDs (Wei et al. (2008) Hum. Mol. Genet. 17, 469-477). We now systematically examine whether the UPR is activated in neuronal forms of GD using a selection of neuronal disease models and a combination of western blotting and semi-quantitative and quantitative real-time polymerase chain reaction. We do not find any changes in either protein or mRNA levels of a number of typical UPR markers including BiP, CHOP, XBP1, Herp and GRP58, in either cultured Gaucher neurons or astrocytes, or in brain regions from mouse models, even at late symptomatic stages. We conclude that the proposition that the UPR is a common mediator for apoptosis in all neurodegenerative LSDs needs to be re-evaluated.
  •  
7.
  • Renman, Agnieszka, et al. (författare)
  • Water filtration with mineral-based byproducts as a sustainable treatment technology
  • 2021
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • The aim of the project was to investigate whether the 200 000 ton slag, that is not used optimally or deposited every year, can be alternatively applied as water treatment materials, ensuring future outlets and providing added value for the steel industry and society. Five goals had been set and could be met: test of filter material for purification in small sewage plants, testing of mineral filters for industrial wastewater and stormwater, new technology to build road shoulders on busy roads with slag that simultaneously cleans stormwater, laboratory-tested filter products, and two graduated doctors.Slag's properties can be modified in the furnace to contain minerals that have properties to bind phosphorus or metals from water. Slags can separate both cations and anions from contaminated water, anions even at pH value 10. Furthermore, slag and bark in combined filters are able to remove PFAS and also fluorine by modifying of AOD slag. Some types of slag are recommended to replace sand in soil beds for sewage treatment. Stormwater wells in cities and industry can be equipped with slag filters. Storm water from traffic-intensive roads can be cleaned in the road shoulder with certain types of slag.R&D has been conducted in clear collaboration between industry and academia. The research has been conducted in the laboratory, at the companies and in the field. Implementation has been possible through researchers and companies starting pilot facilities and studying their function and utility to achieve sustainability goals. The analysis made is that different types of Swedish-produced slag are useful by-products, after simple reprocessing or after modifications, in water purification applications. These applications can be of several different types and be interesting for several end users.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy