SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kaspi S.) ;pers:(Johnston S.)"

Sökning: WFRF:(Kaspi S.) > Johnston S.

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abdo, A. A., et al. (författare)
  • FERMI LARGE AREA TELESCOPE OBSERVATIONS OF THE VELA PULSAR
  • 2009
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 696:2, s. 1084-1093
  • Tidskriftsartikel (refereegranskat)abstract
    • The Vela pulsar is the brightest persistent source in the GeV sky and thus is the traditional first target for new gamma-ray observatories. We report here on initial Fermi Large Area Telescope observations during verification phase pointed exposure and early sky survey scanning. We have used the Vela signal to verify Fermi timing and angular resolution. The high-quality pulse profile, with some 32,400 pulsed photons at E >= 0.03 GeV, shows new features, including pulse structure as fine as 0.3 ms and a distinct third peak, which shifts in phase with energy. We examine the high-energy behavior of the pulsed emission; initial spectra suggest a phase-averaged power-law index of Gamma = 1.51(-0.04)(+0.05) with an exponential cutoff at E-c = 2.9 +/- 0.1 GeV. Spectral fits with generalized cutoffs of the form e(-(E/Ec)b) require b <= 1, which is inconsistent with magnetic pair attenuation, and thus favor outer-magnetosphere emission models. Finally, we report on upper limits to any unpulsed component, as might be associated with a surrounding pulsar wind nebula.
  •  
2.
  • Abdo, A. A., et al. (författare)
  • The first fermi large area telescope catalog of gamma-ray pulsars
  • 2010
  • Ingår i: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 187:2, s. 460-494
  • Tidskriftsartikel (refereegranskat)abstract
    • The dramatic increase in the number of known gamma-ray pulsars since the launch of the Fermi Gamma-ray Space Telescope (formerly GLAST) offers the first opportunity to study a sizable population of these high-energy objects. This catalog summarizes 46 high-confidence pulsed detections using the first six months of data taken by the Large Area Telescope (LAT), Fermi's main instrument. Sixteen previously unknown pulsars were discovered by searching for pulsed signals at the positions of bright gamma-ray sources seen with the LAT, or at the positions of objects suspected to be neutron stars based on observations at other wavelengths. The dimmest observed flux among these gamma-ray-selected pulsars is 6.0 x 10(-8) ph cm(-2) s(-1) (for E > 100 MeV). Pulsed gamma-ray emission was discovered from 24 known pulsars by using ephemerides (timing solutions) derived from monitoring radio pulsars. Eight of these new gamma-ray pulsars are millisecond pulsars. The dimmest observed flux among the radio-selected pulsars is 1.4 x 10(-8) ph cm(-2) s(-1) (for E > 100 MeV). The remaining six gamma-ray pulsars were known since the Compton Gamma Ray Observatory mission, or before. The limiting flux for pulse detection is non-uniform over the sky owing to different background levels, especially near the Galactic plane. The pulsed energy spectra can be described by a power law with an exponential cutoff, with cutoff energies in the range similar to 1-5 GeV. The rotational energy-loss rate ((E) over dot) of these neutron stars spans five decades, from similar to 3 x 10(33) erg s(-1) to 5 x 10(38) erg s(-1), and the apparent efficiencies for conversion to gammaray emission range from similar to 0.1% to similar to unity, although distance uncertainties complicate efficiency estimates. The pulse shapes show substantial diversity, but roughly 75% of the gamma-ray pulse profiles have two peaks, separated by greater than or similar to 0.2 of rotational phase. For most of the pulsars, gamma-ray emission appears to come mainly from the outer magnetosphere, while polar-cap emission remains plausible for a remaining few. Spatial associations imply that many of these pulsars power pulsar wind nebulae. Finally, these discoveries suggest that gamma-ray-selected young pulsars are born at a rate comparable to that of their radio-selected cousins and that the birthrate of all young gamma-ray-detected pulsars is a substantial fraction of the expected Galactic supernova rate.
  •  
3.
  • Abdo, A. A., et al. (författare)
  • DISCOVERY OF PULSATIONS FROM THE PULSAR J0205+6449 IN SNR 3C 58 WITH THE FERMI GAMMA-RAY SPACE TELESCOPE
  • 2009
  • Ingår i: Astrophysical Journal Letters. - 2041-8205 .- 0004-637X .- 1538-4357. ; 699:2, s. L102-L107
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of gamma-ray pulsations (>= 0.1 GeV) from the young radio and X-ray pulsar PSR J0205 + 6449 located in the Galactic supernova remnant 3C 58. Data in the gamma-ray band were acquired by the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope (formerly GLAST), while the radio rotational ephemeris used to fold gamma-rays was obtained using both the Green Bank Telescope and the Lovell telescope at Jodrell Bank. The light curve consists of two peaks separated by 0.49 +/- 0.01 +/- 0.01 cycles which are aligned with the X-ray peaks. The first gamma-ray peak trails the radio pulse by 0.08 +/- 0.01 +/- 0.01, while its amplitude decreases with increasing energy as for the other gamma-ray pulsars. Spectral analysis of the pulsed gamma-ray emission suggests a simple power law of index -2.1 +/- 0.1 +/- 0.2 with an exponential cutoff at 3.0(-0.7)(+1.1) +/- 0.4 GeV. The first uncertainty is statistical and the second is systematic. The integral gamma-ray photon flux above 0.1 GeV is (13.7 +/- 1.4 +/- 3.0) x 10(-8) cm(-2) s(-1), which implies for a distance of 3.2 kpc and assuming a broad fan-like beam a luminosity of 8.3 x 10(34) erg s(-1) and an efficiency eta of 0.3%. Finally, we report a 95% upper limit on the flux of 1.7 x 10(-8) cm(-2) s(-1) for off-pulse emission from the object.
  •  
4.
  • Camilo, F., et al. (författare)
  • Revival of the Magnetar PSR J1622-4950: Observations with MeerKAT, Parkes, XMM-Newton, Swift, Chandra, and NuSTAR
  • 2018
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 856:2
  • Tidskriftsartikel (refereegranskat)abstract
    • New radio (MeerKAT and Parkes) and X-ray (XMM-Newton, Swift, Chandra, and NuSTAR) observations of PSR J1622-4950 indicate that the magnetar, in a quiescent state since at least early 2015, reactivated between 2017 March 19 and April 5. The radio flux density, while variable, is approximately 100 larger than during its dormant state. The X-ray flux one month after reactivation was at least 800 larger than during quiescence, and has been decaying exponentially on a 111 19 day timescale. This high-flux state, together with a radio-derived rotational ephemeris, enabled for the first time the detection of X-ray pulsations for this magnetar. At 5%, the 0.3-6 keV pulsed fraction is comparable to the smallest observed for magnetars. The overall pulsar geometry inferred from polarized radio emission appears to be broadly consistent with that determined 6-8 years earlier. However, rotating vector model fits suggest that we are now seeing radio emission from a different location in the magnetosphere than previously. This indicates a novel way in which radio emission from magnetars can differ from that of ordinary pulsars. The torque on the neutron star is varying rapidly and unsteadily, as is common for magnetars following outburst, having changed by a factor of 7 within six months of reactivation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy