SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kathiresan Sekar) ;pers:(Groop Leif)"

Sökning: WFRF:(Kathiresan Sekar) > Groop Leif

  • Resultat 1-10 av 24
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Berndt, Sonja I., et al. (författare)
  • Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture
  • 2013
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 45:5, s. 501-U69
  • Tidskriftsartikel (refereegranskat)abstract
    • Approaches exploiting trait distribution extremes may be used to identify loci associated with common traits, but it is unknown whether these loci are generalizable to the broader population. In a genome-wide search for loci associated with the upper versus the lower 5th percentiles of body mass index, height and waist-to-hip ratio, as well as clinical classes of obesity, including up to 263,407 individuals of European ancestry, we identified 4 new loci (IGFBP4, H6PD, RSRC1 and PPP2R2A) influencing height detected in the distribution tails and 7 new loci (HNF4G, RPTOR, GNAT2, MRPS33P4, ADCY9, HS6ST3 and ZZZ3) for clinical classes of obesity. Further, we find a large overlap in genetic structure and the distribution of variants between traits based on extremes and the general population and little etiological heterogeneity between obesity subgroups.
  •  
2.
  • Do, Ron, et al. (författare)
  • Common variants associated with plasma triglycerides and risk for coronary artery disease
  • 2013
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 45:11, s. 1345-
  • Tidskriftsartikel (refereegranskat)abstract
    • Triglycerides are transported in plasma by specific triglyceride-rich lipoproteins; in epidemiological studies, increased triglyceride levels correlate with higher risk for coronary artery disease (CAD). However, it is unclear whether this association reflects causal processes. We used 185 common variants recently mapped for plasma lipids (P < 5 x 10(-8) for each) to examine the role of triglycerides in risk for CAD. First, we highlight loci associated with both low-density lipoprotein cholesterol (LDL-C) and triglyceride levels, and we show that the direction and magnitude of the associations with both traits are factors in determining CAD risk. Second, we consider loci with only a strong association with triglycerides and show that these loci are also associated with CAD. Finally, in a model accounting for effects on LDL-C and/or high-density lipoprotein cholesterol (HDL-C) levels, the strength of a polymorphism's effect on triglyceride levels is correlated with the magnitude of its effect on CAD risk. These results suggest that triglyceride-rich lipoproteins causally influence risk for CAD.
  •  
3.
  • Flannick, Jason, et al. (författare)
  • Assessing the phenotypic effects in the general population of rare variants in genes for a dominant Mendelian form of diabetes
  • 2013
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 45:11, s. 1380-1380
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome sequencing can identify individuals in the general population who harbor rare coding variants in genes for Mendelian disorders1-7 and who may consequently have increased disease risk. Previous studies of rare variants in phenotypically extreme individuals display ascertainment bias and may demonstrate inflated effect-size estimates8-12. We sequenced seven genes for maturity-onset diabetes of the young (MODY) 13 in well-phenotyped population samples14,15 (n = 4,003). We filtered rare variants according to two prediction criteria for disease-causing mutations: reported previously in MODY or satisfying stringent de novo thresholds (rare, conserved and protein damaging). Approximately 1.5% and 0.5% of randomly selected individuals from the Framingham and Jackson Heart Studies, respectively, carry variants from these two classes. However, the vast majority of carriers remain euglycemic through middle age. Accurate estimates of variant effect sizes from population-based sequencing are needed to avoid falsely predicting a substantial fraction of individuals as being at risk for MODY or other Mendelian diseases.
  •  
4.
  • Flannick, Jason, et al. (författare)
  • Loss-of-function mutations in SLC30A8 protect against type 2 diabetes.
  • 2014
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 46:4, s. 357-357
  • Tidskriftsartikel (refereegranskat)abstract
    • Loss-of-function mutations protective against human disease provide in vivo validation of therapeutic targets, but none have yet been described for type 2 diabetes (T2D). Through sequencing or genotyping of ∼150,000 individuals across 5 ancestry groups, we identified 12 rare protein-truncating variants in SLC30A8, which encodes an islet zinc transporter (ZnT8) and harbors a common variant (p.Trp325Arg) associated with T2D risk and glucose and proinsulin levels. Collectively, carriers of protein-truncating variants had 65% reduced T2D risk (P = 1.7 × 10(-6)), and non-diabetic Icelandic carriers of a frameshift variant (p.Lys34Serfs*50) demonstrated reduced glucose levels (-0.17 s.d., P = 4.6 × 10(-4)). The two most common protein-truncating variants (p.Arg138* and p.Lys34Serfs*50) individually associate with T2D protection and encode unstable ZnT8 proteins. Previous functional study of SLC30A8 suggested that reduced zinc transport increases T2D risk, and phenotypic heterogeneity was observed in mouse Slc30a8 knockouts. In contrast, loss-of-function mutations in humans provide strong evidence that SLC30A8 haploinsufficiency protects against T2D, suggesting ZnT8 inhibition as a therapeutic strategy in T2D prevention.
  •  
5.
  • Gaulton, Kyle J, et al. (författare)
  • Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci.
  • 2015
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 47:12, s. 1415-1415
  • Tidskriftsartikel (refereegranskat)abstract
    • We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct signal mapped predominantly to noncoding sequence, implying that association with T2D is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine mapping implicated rs10830963 as driving T2D association. We confirmed that the T2D risk allele for this SNP increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease.
  •  
6.
  • Guey, Lin T., et al. (författare)
  • Power in the Phenotypic Extremes: A Simulation Study of Power in Discovery and Replication of Rare Variants
  • 2011
  • Ingår i: Genetic Epidemiology. - : Wiley. - 0741-0395. ; 35:4, s. 236-246
  • Tidskriftsartikel (refereegranskat)abstract
    • Next-generation sequencing technologies are making it possible to study the role of rare variants in human disease. Many studies balance statistical power with cost-effectiveness by (a) sampling from phenotypic extremes and (b) utilizing a two-stage design. Two-stage designs include a broad-based discovery phase and selection of a subset of potential causal genes/variants to be further examined in independent samples. We evaluate three parameters: first, the gain in statistical power due to extreme sampling to discover causal variants; second, the informativeness of initial (Phase I) association statistics to select genes/variants for follow-up; third, the impact of extreme and random sampling in (Phase 2) replication. We present a quantitative method to select individuals from the phenotypic extremes of a binary trait, and simulate disease association studies under a variety of sample sizes and sampling schemes. First, we find that while studies sampling from extremes have excellent power to discover rare variants, they have limited power to associate them to phenotype-suggesting high false-negative rates for upcoming studies. Second, consistent with previous studies, we find that the effect sizes estimated in these studies are expected to be systematically larger compared with the overall population effect size; in a well-cited lipids study, we estimate the reported effect to be twofold larger. Third, replication studies require large samples from the general population to have sufficient power; extreme sampling could reduce the required sample size as much as fourfold. Our observations offer practical guidance for the design and interpretation of studies that utilize extreme sampling. Genet. Epidemiol. 35: 236-246, 2011. (c) 2011 Wiley-Liss, Inc.
  •  
7.
  • Gusarova, Viktoria, et al. (författare)
  • Genetic inactivation of ANGPTL4 improves glucose homeostasis and is associated with reduced risk of diabetes
  • 2018
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9, s. 1-11
  • Tidskriftsartikel (refereegranskat)abstract
    • Angiopoietin-like 4 (ANGPTL4) is an endogenous inhibitor of lipoprotein lipase that modulates lipid levels, coronary atherosclerosis risk, and nutrient partitioning. We hypothesize that loss of ANGPTL4 function might improve glucose homeostasis and decrease risk of type 2 diabetes (T2D). We investigate protein-altering variants in ANGPTL4 among 58,124 participants in the DiscovEHR human genetics study, with follow-up studies in 82,766 T2D cases and 498,761 controls. Carriers of p.E40K, a variant that abolishes ANGPTL4 ability to inhibit lipoprotein lipase, have lower odds of T2D (odds ratio 0.89, 95% confidence interval 0.85-0.92, p = 6.3 × 10-10), lower fasting glucose, and greater insulin sensitivity. Predicted loss-of-function variants are associated with lower odds of T2D among 32,015 cases and 84,006 controls (odds ratio 0.71, 95% confidence interval 0.49-0.99, p = 0.041). Functional studies in Angptl4-deficient mice confirm improved insulin sensitivity and glucose homeostasis. In conclusion, genetic inactivation of ANGPTL4 is associated with improved glucose homeostasis and reduced risk of T2D.
  •  
8.
  • Jaiswal, Siddhartha, et al. (författare)
  • Age-Related Clonal Hematopoiesis Associated with Adverse Outcomes.
  • 2014
  • Ingår i: New England Journal of Medicine. - 0028-4793. ; 371:26, s. 2488-2498
  • Tidskriftsartikel (refereegranskat)abstract
    • Background The incidence of hematologic cancers increases with age. These cancers are associated with recurrent somatic mutations in specific genes. We hypothesized that such mutations would be detectable in the blood of some persons who are not known to have hematologic disorders. Methods We analyzed whole-exome sequencing data from DNA in the peripheral-blood cells of 17,182 persons who were unselected for hematologic phenotypes. We looked for somatic mutations by identifying previously characterized single-nucleotide variants and small insertions or deletions in 160 genes that are recurrently mutated in hematologic cancers. The presence of mutations was analyzed for an association with hematologic phenotypes, survival, and cardiovascular events. Results Detectable somatic mutations were rare in persons younger than 40 years of age but rose appreciably in frequency with age. Among persons 70 to 79 years of age, 80 to 89 years of age, and 90 to 108 years of age, these clonal mutations were observed in 9.5% (219 of 2300 persons), 11.7% (37 of 317), and 18.4% (19 of 103), respectively. The majority of the variants occurred in three genes: DNMT3A, TET2, and ASXL1. The presence of a somatic mutation was associated with an increase in the risk of hematologic cancer (hazard ratio, 11.1; 95% confidence interval [CI], 3.9 to 32.6), an increase in all-cause mortality (hazard ratio, 1.4; 95% CI, 1.1 to 1.8), and increases in the risks of incident coronary heart disease (hazard ratio, 2.0; 95% CI, 1.2 to 3.4) and ischemic stroke (hazard ratio, 2.6; 95% CI, 1.4 to 4.8). Conclusions Age-related clonal hematopoiesis is a common condition that is associated with increases in the risk of hematologic cancer and in all-cause mortality, with the latter possibly due to an increased risk of cardiovascular disease. (Funded by the National Institutes of Health and others.).
  •  
9.
  • Kathiresan, Sekar, et al. (författare)
  • Common variants at 30 loci contribute to polygenic dyslipidemia
  • 2009
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 41:1, s. 56-65
  • Tidskriftsartikel (refereegranskat)abstract
    • Blood low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol and triglyceride levels are risk factors for cardiovascular disease. To dissect the polygenic basis of these traits, we conducted genome-wide association screens in 19,840 individuals and replication in up to 20,623 individuals. We identified 30 distinct loci associated with lipoprotein concentrations (each with P < 5 x 10(-8)), including 11 loci that reached genome-wide significance for the first time. The 11 newly defined loci include common variants associated with LDL cholesterol near ABCG8, MAFB, HNF1A and TIMD4; with HDL cholesterol near ANGPTL4, FADS1-FADS2-FADS3, HNF4A, LCAT, PLTP and TTC39B; and with triglycerides near AMAC1L2, FADS1-FADS2-FADS3 and PLTP. The proportion of individuals exceeding clinical cut points for high LDL cholesterol, low HDL cholesterol and high triglycerides varied according to an allelic dosage score (P < 10(-15) for each trend). These results suggest that the cumulative effect of multiple common variants contributes to polygenic dyslipidemia.
  •  
10.
  • Kathiresan, Sekar, et al. (författare)
  • Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans.
  • 2008
  • Ingår i: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 40:2, s. 189-97
  • Tidskriftsartikel (refereegranskat)abstract
    • Blood concentrations of lipoproteins and lipids are heritable risk factors for cardiovascular disease. Using genome-wide association data from three studies (n = 8,816 that included 2,758 individuals from the Diabetes Genetics Initiative specific to the current paper as well as 1,874 individuals from the FUSION study of type 2 diabetes and 4,184 individuals from the SardiNIA study of aging-associated variables reported in a companion paper in this issue) and targeted replication association analyses in up to 18,554 independent participants, we show that common SNPs at 18 loci are reproducibly associated with concentrations of low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, and/or triglycerides. Six of these loci are new (P < 5 x 10(-8) for each new locus). Of the six newly identified chromosomal regions, two were associated with LDL cholesterol (1p13 near CELSR2, PSRC1 and SORT1 and 19p13 near CILP2 and PBX4), one with HDL cholesterol (1q42 in GALNT2) and five with triglycerides (7q11 near TBL2 and MLXIPL, 8q24 near TRIB1, 1q42 in GALNT2, 19p13 near CILP2 and PBX4 and 1p31 near ANGPTL3). At 1p13, the LDL-associated SNP was also strongly correlated with CELSR2, PSRC1, and SORT1 transcript levels in human liver, and a proxy for this SNP was recently shown to affect risk for coronary artery disease. Understanding the molecular, cellular and clinical consequences of the newly identified loci may inform therapy and clinical care.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 24
Typ av publikation
tidskriftsartikel (24)
Typ av innehåll
refereegranskat (24)
Författare/redaktör
Kathiresan, Sekar (24)
Boehnke, Michael (18)
Salomaa, Veikko (16)
McCarthy, Mark I (15)
Mohlke, Karen L (14)
visa fler...
Tuomilehto, Jaakko (14)
Altshuler, David (14)
Melander, Olle (13)
Abecasis, Goncalo R. (13)
Voight, Benjamin F. (13)
Willer, Cristen J (13)
Collins, Francis S. (13)
Laakso, Markku (12)
Thorsteinsdottir, Un ... (12)
Stefansson, Kari (12)
Loos, Ruth J F (12)
Perola, Markus (11)
Wareham, Nicholas J. (11)
Thorleifsson, Gudmar (11)
Luan, Jian'an (11)
Metspalu, Andres (11)
Hayward, Caroline (11)
Hirschhorn, Joel N. (11)
Boerwinkle, Eric (11)
Jackson, Anne U. (11)
Rudan, Igor (10)
Kuusisto, Johanna (10)
Ripatti, Samuli (10)
Jarvelin, Marjo-Riit ... (10)
Barroso, Ines (10)
Gudnason, Vilmundur (10)
Hveem, Kristian (10)
Sanna, Serena (10)
Borecki, Ingrid B. (10)
Strachan, David P (9)
Deloukas, Panos (9)
Ridker, Paul M. (9)
Chasman, Daniel I. (9)
van Duijn, Cornelia ... (9)
Ingelsson, Erik (9)
Gieger, Christian (9)
Munroe, Patricia B. (9)
Hofman, Albert (9)
Uitterlinden, André ... (9)
Cupples, L. Adrienne (9)
Assimes, Themistocle ... (9)
Esko, Tõnu (9)
Feitosa, Mary F. (9)
Bonnycastle, Lori L. (9)
visa färre...
Lärosäte
Lunds universitet (24)
Uppsala universitet (13)
Karolinska Institutet (10)
Umeå universitet (7)
Göteborgs universitet (6)
Stockholms universitet (1)
visa fler...
Högskolan Dalarna (1)
visa färre...
Språk
Engelska (24)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (24)
Naturvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy