SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kettunen Johannes) ;lar1:(gu)"

Sökning: WFRF:(Kettunen Johannes) > Göteborgs universitet

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Speliotes, Elizabeth K., et al. (författare)
  • Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index
  • 2010
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 42:11, s. 937-948
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity is globally prevalent and highly heritable, but its underlying genetic factors remain largely elusive. To identify genetic loci for obesity susceptibility, we examined associations between body mass index and ~2.8 million SNPs in up to 123,865 individuals with targeted follow up of 42 SNPs in up to 125,931 additional individuals. We confirmed 14 known obesity susceptibility loci and identified 18 new loci associated with body mass index (P < 5 × 10−8), one of which includes a copy number variant near GPRC5B. Some loci (at MC4R, POMC, SH2B1 and BDNF) map near key hypothalamic regulators of energy balance, and one of these loci is near GIPR, an incretin receptor. Furthermore, genes in other newly associated loci may provide new insights into human body weight regulation.
  •  
2.
  • Coviello, Andrea D, et al. (författare)
  • A genome-wide association meta-analysis of circulating sex hormone-binding globulin reveals multiple Loci implicated in sex steroid hormone regulation.
  • 2012
  • Ingår i: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7404 .- 1553-7390. ; 8:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Sex hormone-binding globulin (SHBG) is a glycoprotein responsible for the transport and biologic availability of sex steroid hormones, primarily testosterone and estradiol. SHBG has been associated with chronic diseases including type 2 diabetes (T2D) and with hormone-sensitive cancers such as breast and prostate cancer. We performed a genome-wide association study (GWAS) meta-analysis of 21,791 individuals from 10 epidemiologic studies and validated these findings in 7,046 individuals in an additional six studies. We identified twelve genomic regions (SNPs) associated with circulating SHBG concentrations. Loci near the identified SNPs included SHBG (rs12150660, 17p13.1, p=1.8×10(-106)), PRMT6 (rs17496332, 1p13.3, p=1.4×10(-11)), GCKR (rs780093, 2p23.3, p=2.2×10(-16)), ZBTB10 (rs440837, 8q21.13, p=3.4×10(-09)), JMJD1C (rs7910927, 10q21.3, p=6.1×10(-35)), SLCO1B1 (rs4149056, 12p12.1, p=1.9×10(-08)), NR2F2 (rs8023580, 15q26.2, p=8.3×10(-12)), ZNF652 (rs2411984, 17q21.32, p=3.5×10(-14)), TDGF3 (rs1573036, Xq22.3, p=4.1×10(-14)), LHCGR (rs10454142, 2p16.3, p=1.3×10(-07)), BAIAP2L1 (rs3779195, 7q21.3, p=2.7×10(-08)), and UGT2B15 (rs293428, 4q13.2, p=5.5×10(-06)). These genes encompass multiple biologic pathways, including hepatic function, lipid metabolism, carbohydrate metabolism and T2D, androgen and estrogen receptor function, epigenetic effects, and the biology of sex steroid hormone-responsive cancers including breast and prostate cancer. We found evidence of sex-differentiated genetic influences on SHBG. In a sex-specific GWAS, the loci 4q13.2-UGT2B15 was significant in men only (men p=2.5×10(-08), women p=0.66, heterogeneity p=0.003). Additionally, three loci showed strong sex-differentiated effects: 17p13.1-SHBG and Xq22.3-TDGF3 were stronger in men, whereas 8q21.12-ZBTB10 was stronger in women. Conditional analyses identified additional signals at the SHBG gene that together almost double the proportion of variance explained at the locus. Using an independent study of 1,129 individuals, all SNPs identified in the overall or sex-differentiated or conditional analyses explained ∼15.6% and ∼8.4% of the genetic variation of SHBG concentrations in men and women, respectively. The evidence for sex-differentiated effects and allelic heterogeneity highlight the importance of considering these features when estimating complex trait variance.
  •  
3.
  • Heid, Iris M, et al. (författare)
  • Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution
  • 2010
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 42:11, s. 949-960
  • Tidskriftsartikel (refereegranskat)abstract
    • Waist-hip ratio (WHR) is a measure of body fat distribution and a predictor of metabolic consequences independent of overall adiposity. WHR is heritable, but few genetic variants influencing this trait have been identified. We conducted a meta-analysis of 32 genome-wide association studies for WHR adjusted for body mass index (comprising up to 77,167 participants), following up 16 loci in an additional 29 studies (comprising up to 113,636 subjects). We identified 13 new loci in or near RSPO3, VEGFA, TBX15-WARS2, NFE2L3, GRB14, DNM3-PIGC, ITPR2-SSPN, LY86, HOXC13, ADAMTS9, ZNRF3-KREMEN1, NISCH-STAB1 and CPEB4 (P = 1.9 × 10⁻⁹ to P = 1.8 × 10⁻⁴⁰) and the known signal at LYPLAL1. Seven of these loci exhibited marked sexual dimorphism, all with a stronger effect on WHR in women than men (P for sex difference = 1.9 × 10⁻³ to P = 1.2 × 10⁻¹³). These findings provide evidence for multiple loci that modulate body fat distribution independent of overall adiposity and reveal strong gene-by-sex interactions.
  •  
4.
  • Hong, Shengjun, et al. (författare)
  • Genome-wide association study of Alzheimer's disease CSF biomarkers in the EMIF-AD Multimodal Biomarker Discovery dataset.
  • 2020
  • Ingår i: Translational psychiatry. - : Springer Science and Business Media LLC. - 2158-3188. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder and the most common form of dementia in the elderly. Susceptibility to AD is considerably determined by genetic factors which hitherto were primarily identified using case-control designs. Elucidating the genetic architecture of additional AD-related phenotypic traits, ideally those linked to the underlying disease process, holds great promise in gaining deeper insights into the genetic basis of AD and in developing better clinical prediction models. To this end, we generated genome-wide single-nucleotide polymorphism (SNP) genotyping data in 931 participants of the European Medical Information Framework Alzheimer's Disease Multimodal Biomarker Discovery (EMIF-AD MBD) sample to search for novel genetic determinants of AD biomarker variability. Specifically, we performed genome-wide association study (GWAS) analyses on 16 traits, including 14 measures derived from quantifications of five separate amyloid-beta (Aβ) and tau-protein species in the cerebrospinal fluid (CSF). In addition to confirming the well-established effects of apolipoprotein E (APOE) on diagnostic outcome and phenotypes related to Aβ42, we detected novel potential signals in the zinc finger homeobox 3 (ZFHX3) for CSF-Aβ38 and CSF-Aβ40 levels, and confirmed the previously described sex-specific association between SNPs in geminin coiled-coil domain containing (GMNC) and CSF-tau. Utilizing the results from independent case-control AD GWAS to construct polygenic risk scores (PRS) revealed that AD risk variants only explain a small fraction of CSF biomarker variability. In conclusion, our study represents a detailed first account of GWAS analyses on CSF-Aβ and -tau-related traits in the EMIF-AD MBD dataset. In subsequent work, we will utilize the genomics data generated here in GWAS of other AD-relevant clinical outcomes ascertained in this unique dataset.
  •  
5.
  • Kim, Min, et al. (författare)
  • Primary fatty amides in plasma associated with brain amyloid burden, hippocampal volume, and memory in the European Medical Information Framework for Alzheimer's Disease biomarker discovery cohort
  • 2019
  • Ingår i: Alzheimer's & Dementia. - : Elsevier. - 1552-5260 .- 1552-5279. ; 15:6, s. 817-827
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTION: A critical and as-yet unmet need in Alzheimer's disease (AD) is the discovery of peripheral small molecule biomarkers. Given that brain pathology precedes clinical symptom onset, we set out to test whether metabolites in blood associated with pathology as indexed by cerebrospinal fluid (CSF) AD biomarkers.METHODS: This study analyzed 593 plasma samples selected from the European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery study, of individuals who were cognitively healthy (n = 242), had mild cognitive impairment (n = 236), or had AD-type dementia (n = 115). Logistic regressions were carried out between plasma metabolites (n = 883) and CSF markers, magnetic resonance imaging, cognition, and clinical diagnosis.RESULTS: Eight metabolites were associated with amyloid β and one with t-tau in CSF, these were primary fatty acid amides (PFAMs), lipokines, and amino acids. From these, PFAMs, glutamate, and aspartate also associated with hippocampal volume and memory.DISCUSSION: PFAMs have been found increased and associated with amyloid β burden in CSF and clinical measures.
  •  
6.
  • Lango Allen, Hana, et al. (författare)
  • Hundreds of variants clustered in genomic loci and biological pathways affect human height.
  • 2010
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 467:7317, s. 832-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P<0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
  •  
7.
  • Shi, Liu, et al. (författare)
  • Dickkopf-1 Overexpression in vitro Nominates Candidate Blood Biomarkers Relating to Alzheimer's Disease Pathology.
  • 2020
  • Ingår i: Journal of Alzheimer's disease : JAD. - : IOS Press. - 1875-8908 .- 1387-2877. ; 77:3, s. 1353-1368
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous studies suggest that Dickkopf-1 (DKK1), an inhibitor of Wnt signaling, plays a role in amyloid-induced toxicity and hence Alzheimer's disease (AD). However, the effect of DKK1 expression on protein expression, and whether such proteins are altered in disease, is unknown.We aim to test whether DKK1 induced protein signature obtained in vitro were associated with markers of AD pathology as used in the amyloid/tau/neurodegeneration (ATN) framework as well as with clinical outcomes.We first overexpressed DKK1 in HEK293A cells and quantified 1,128 proteins in cell lysates using aptamer capture arrays (SomaScan) to obtain a protein signature induced by DKK1. We then used the same assay to measure the DKK1-signature proteins in human plasma in two large cohorts, EMIF (n = 785) and ANM (n = 677).We identified a 100-protein signature induced by DKK1 in vitro. Subsets of proteins, along with age and apolipoprotein E ɛ4 genotype distinguished amyloid pathology (A + T-N-, A+T+N-, A+T-N+, and A+T+N+) from no AD pathology (A-T-N-) with an area under the curve of 0.72, 0.81, 0.88, and 0.85, respectively. Furthermore, we found that some signature proteins (e.g., Complement C3 and albumin) were associated with cognitive score and AD diagnosis in both cohorts.Our results add further evidence for a role of DKK regulation of Wnt signaling in AD and suggest that DKK1 induced signature proteins obtained in vitro could reflect theATNframework as well as predict disease severity and progression in vivo.
  •  
8.
  • Shi, Liu, et al. (författare)
  • Discovery and validation of plasma proteomic biomarkers relating to brain amyloid burden by SOMAscan assay.
  • 2019
  • Ingår i: Alzheimer's & dementia : the journal of the Alzheimer's Association. - : Wiley. - 1552-5279 .- 1552-5260. ; 15:11, s. 1478-1488
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma proteins have been widely studied as candidate biomarkers to predict brain amyloid deposition to increase recruitment efficiency in secondary prevention clinical trials for Alzheimer's disease. Most such biomarker studies are targeted to specific proteins or are biased toward high abundant proteins.4001 plasma proteins were measured in two groups of participants (discovery group=516, replication group=365) selected from the European Medical Information Framework for Alzheimer's disease Multimodal Biomarker Discovery study, all of whom had measures of amyloid.A panel of proteins (n=44), along with age and apolipoprotein E (APOE) ε4, predicted brain amyloid deposition with good performance in both the discovery group (area under the curve=0.78) and the replication group (area under the curve=0.68). Furthermore, a causal relationship between amyloid and tau was confirmed by Mendelian randomization.The results suggest that high-dimensional plasma protein testing could be a useful and reproducible approach for measuring brain amyloid deposition.
  •  
9.
  • Shi, Liu, et al. (författare)
  • Replication study of plasma proteins relating to Alzheimer's pathology.
  • 2021
  • Ingår i: Alzheimer's & dementia : the journal of the Alzheimer's Association. - : Wiley. - 1552-5279 .- 1552-5260. ; 17:9, s. 1452-1464
  • Tidskriftsartikel (refereegranskat)abstract
    • This study sought to discover and replicate plasma proteomic biomarkers relating to Alzheimer's disease (AD) including both the "ATN" (amyloid/tau/neurodegeneration) diagnostic framework and clinical diagnosis.Plasma proteins from 972 subjects (372 controls, 409 mild cognitive impairment [MCI], and 191 AD) were measured using both SOMAscan and targeted assays, including 4001 and 25 proteins, respectively.Protein co-expression network analysis of SOMAscan data revealed the relation between proteins and "N" varied across different neurodegeneration markers, indicating that the ATN variants are not interchangeable. Using hub proteins, age, and apolipoprotein E ε4 genotype discriminated AD from controls with an area under the curve (AUC) of 0.81 and MCI convertors from non-convertors with an AUC of 0.74. Targeted assays replicated the relation of four proteins with the ATN framework and clinical diagnosis.Our study suggests that blood proteins can predict the presence of AD pathology as measured in the ATN framework as well as clinical diagnosis.
  •  
10.
  • Sliz, Eeva, et al. (författare)
  • Uniting biobank resources reveals novel genetic pathways modulating susceptibility for atopic dermatitis
  • 2021
  • Ingår i: Journal of Allergy and Clinical Immunology. - : Elsevier BV. - 0091-6749 .- 1097-6825. ; 149:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Atopic dermatitis (AD) is a common chronic inflammatory skin disease with high heritability. Previous genome-wide association studies have identified several loci predisposing to AD. These findings explain approximately 30% of the variance in AD susceptibility, suggesting that further work is required to fully understand the genetic underpinnings. Objective: We sought to gain additional understanding of the genetic contribution to AD risk by using biobank resources. Methods: We completed a genome-wide meta-analysis of AD in 796,661 individuals (Ncases = 22,474) from the FinnGen study, the Estonian Biobank, and the UK Biobank. We further performed downstream in silico analyses to characterize the risk variants at the novel loci. Results: We report 30 loci associating with AD (P < 5 × 10−8), 5 of which are novel. In 2 of the novel loci, we identified missense mutations with deleterious predictions in desmocollin 1 and serpin family B member 7, genes encoding proteins crucial to epidermal strength and integrity. Conclusions: These findings elucidate novel genetic pathways involved in AD pathophysiology. The likely involvement of desmocollin 1 and serpin family B member 7 in AD pathogenesis may offer opportunities for the development of novel treatment strategies for AD in the future.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13
Typ av publikation
tidskriftsartikel (13)
Typ av innehåll
refereegranskat (13)
Författare/redaktör
Zetterberg, Henrik, ... (8)
Kettunen, Petronella (8)
Vandenberghe, Rik (8)
Scheltens, Philip (8)
Martínez-Lage, Pablo (8)
Lleó, Alberto (8)
visa fler...
Engelborghs, Sebasti ... (8)
Lovestone, Simon (8)
Bertram, Lars (8)
Sleegers, Kristel (8)
Bos, Isabelle (8)
Blennow, Kaj, 1958 (7)
Tsolaki, Magda (7)
Teunissen, Charlotte ... (7)
Rami, Lorena (7)
Frisoni, Giovanni B. (7)
Hye, Abdul (7)
Freund-Levi, Yvonne, ... (7)
Frölich, Lutz (7)
Vos, Stephanie J. B. (7)
Johannsen, Peter (7)
Wallin, Anders, 1950 (6)
Barkhof, Frederik (6)
Molinuevo, José L (6)
Visser, Pieter Jelle (6)
Verhey, Frans (6)
Kettunen, Johannes (5)
Ashton, Nicholas J. (5)
Nevado-Holgado, Alej ... (5)
Viikari, Jorma (4)
Soranzo, Nicole (4)
Ohlsson, Claes, 1965 (4)
Kraft, Peter (4)
McCarthy, Mark I (4)
Hunter, David J (4)
Mangino, Massimo (4)
Wichmann, H. Erich (4)
Alcolea, Daniel (4)
Luan, Jian'an (4)
Rivadeneira, Fernand ... (4)
Harris, Tamara B (4)
Hofman, Albert (4)
Pouta, Anneli (4)
Hartikainen, Anna-Li ... (4)
Illig, Thomas (4)
Prokopenko, Inga (4)
Wood, Andrew R (4)
Frayling, Timothy M (4)
Raitakari, Olli (4)
Perry, John R.B. (4)
visa färre...
Lärosäte
Karolinska Institutet (11)
Örebro universitet (7)
Uppsala universitet (4)
Lunds universitet (4)
Språk
Engelska (13)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (13)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy