SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ketzer João Marcelo) ;pers:(Zamberlan Priscilla M.)"

Sökning: WFRF:(Ketzer João Marcelo) > Zamberlan Priscilla M.

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Giongo, Adriana, et al. (författare)
  • Discovery of a chemosynthesis-based community in the western South Atlantic Ocean
  • 2016
  • Ingår i: Deep Sea Research Part I. - : Elsevier. - 0967-0637 .- 1879-0119. ; 112, s. 45-56
  • Tidskriftsartikel (refereegranskat)abstract
    • Chemosynthetic communities have been described from a variety of deep-sea environments across the world's oceans. They constitute very interesting biological systems in terms of their ecology, evolution and biogeography, and also given their potential as indicators of the presence and abundance of consistent hydrocarbon-based nutritional sources. Up to now such peculiar biotic assemblages have not been reported for the western South Atlantic Ocean, leaving this large region undocumented with respect to the presence, composition and history of such communities. Here we report on the presence of a chemosynthetic community off the coast of southern Brazil, in an area where high-levels of methane and the presence of gas hydrates have been detected. We performed metagenomic analyses of the microbial community present at this site, and also employed molecular approaches to identify components of its benthic fauna. We conducted phylogenetic analyses comparing the components of this assemblage to those found elsewhere in the world, which allowed a historical assessment of the structure and dynamics of these systems. Our results revealed that the microbial community at this site is quite diverse, and contains many components that are very closely related to lineages previously sampled in ecologically similar environments across the globe. Anaerobic methanotrophic (ANME) archaeal groups were found to be very abundant at this site, suggesting that methane is indeed an important source of nutrition for this community. In addition, we document the presence at this site of a vestimentiferan siboglinid polychaete and the bivalve Acharax sp., both of which are typical components of deep-sea chemosynthetic communities. The remarkable similarity in biotic composition between this area and other deep-sea communities across the world supports the interpretation that these assemblages are historically connected across the global oceans, undergoing colonization from distant sites and influenced by local ecological features that select a stereotyped suite of specifically adapted organisms. (C) 2015 Elsevier Ltd. All rights reserved.
  •  
2.
  • Giongo, Adriana, et al. (författare)
  • Distinct deep subsurface microbial communities in two sandstone units separated by a mudstone layer
  • 2020
  • Ingår i: Geosciences Journal. - : Springer. - 1226-4806 .- 1598-7477. ; 24, s. 267-274
  • Tidskriftsartikel (refereegranskat)abstract
    • Deep subsurface microbial communities are more abundant in coarse-grained sedimentary rocks such as sandstones than in fine-grained mudstones. The low porosity and low permeability of mudstones are believed to restrict microbial life. Then, it is expected that distinct, isolated microbial communities may form in sandstones separated by mudstones. In this context, the connectivity between microbial communities in different sandstone units can be investigated to infer evolutionary patterns of diversification in space-time, which may potentially contribute with relevant data for analyses of hydraulic connectivity and stratigraphic correlation. In this work, we used high throughput DNA sequencing of a ribosomal 16S gene fragment to characterize the prokaryotic communities found in Permian sandstone samples of the same core that are separated by one mudstone interval, in the Charqueadas coal field, Parana Basin (Southern Brazil). Our samples were collected at ∌300 m deep, in porous sandstones separated by a thick mudstone package. Differences in the bacterial community structure between samples were observed for the classified OTUs, from phylum to genus. Molecular biology might be further applied as a possible tool to help to understand the spatial and temporal distribution of depositional facies, and the efficiency of low permeability rocks to compartmentalize reservoirs. Ongoing studies aim to extend the present investigation into further analyses regarding lateral changes in microbial communities present in the same sandstone units.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy