SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Khotyaintsev Yuri) ;pers:(Chen L. J)"

Sökning: WFRF:(Khotyaintsev Yuri) > Chen L. J

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Burch, J. L., et al. (författare)
  • Electron-scale measurements of magnetic reconnection in space
  • 2016
  • Ingår i: Science. - : AMER ASSOC ADVANCEMENT SCIENCE. - 0036-8075 .- 1095-9203. ; 352:6290, s. 1189-
  • Forskningsöversikt (refereegranskat)abstract
    • Magnetic reconnection is a fundamental physical process in plasmas whereby stored magnetic energy is converted into heat and kinetic energy of charged particles. Reconnection occurs in many astrophysical plasma environments and in laboratory plasmas. Using measurements with very high time resolution, NASA's Magnetospheric Multiscale (MMS) mission has found direct evidence for electron demagnetization and acceleration at sites along the sunward boundary of Earth's magnetosphere where the interplanetary magnetic field reconnects with the terrestrial magnetic field. We have (i) observed the conversion of magnetic energy to particle energy; (ii) measured the electric field and current, which together cause the dissipation of magnetic energy; and (iii) identified the electron population that carries the current as a result of demagnetization and acceleration within the reconnection diffusion/dissipation region.
  •  
2.
  • Chen, L. -J, et al. (författare)
  • Electron Bulk Acceleration and Thermalization at Earth's Quasiperpendicular Bow Shock
  • 2018
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 120:22
  • Tidskriftsartikel (refereegranskat)abstract
    • Electron heating at Earth's quasiperpendicular bow shock has been surmised to be due to the combined effects of a quasistatic electric potential and scattering through wave-particle interaction. Here we report the observation of electron distribution functions indicating a new electron heating process occurring at the leading edge of the shock front. Incident solar wind electrons are accelerated parallel to the magnetic field toward downstream, reaching an electron-ion relative drift speed exceeding the electron thermal speed. The bulk acceleration is associated with an electric field pulse embedded in a whistler-mode wave. The high electron-ion relative drift is relaxed primarily through a nonlinear current-driven instability. The relaxed distributions contain a beam traveling toward the shock as a remnant of the accelerated electrons. Similar distribution functions prevail throughout the shock transition layer, suggesting that the observed acceleration and thermalization is essential to the cross-shock electron heating. 
  •  
3.
  • Chen, L-J, et al. (författare)
  • Lower-Hybrid Drift Waves Driving Electron Nongyrotropic Heating and Vortical Flows in a Magnetic Reconnection Layer
  • 2020
  • Ingår i: Physical Review Letters. - : American Physical Society (APS). - 0031-9007 .- 1079-7114. ; 125:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report measurements of lower-hybrid drift waves driving electron heating and vortical flows in an electron-scale reconnection layer under a guide field. Electrons accelerated by the electrostatic potential of the waves exhibit perpendicular and nongyrotropic heating. The vortical flows generate magnetic field perturbations comparable to the guide field magnitude. The measurements reveal a new regime of electron-wave interaction and how this interaction modifies the electron dynamics in the reconnection layer.
  •  
4.
  • Norgren, Cecilia, et al. (författare)
  • Finite gyroradius effects in the electron outflow of asymmetric magnetic reconnection
  • 2016
  • Ingår i: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 43:13, s. 6724-6733
  • Tidskriftsartikel (refereegranskat)abstract
    • We present observations of asymmetric magnetic reconnection showing evidence of electron demagnetization in the electron outflow. The observations were made at the magnetopause by the four Magnetospheric Multiscale (MMS) spacecraft, separated by approximate to 15km. The reconnecting current sheet has negligible guide field, and all four spacecraft likely pass close to the electron diffusion region just south of the X line. In the electron outflow near the X line, all four spacecraft observe highly structured electron distributions in a region comparable to a few electron gyroradii. The distributions consist of a core with T-vertical bar>T and a nongyrotropic crescent perpendicular to the magnetic field. The crescents are associated with finite gyroradius effects of partly demagnetized electrons. These observations clearly demonstrate the manifestation of finite gyroradius effects in an electron-scale reconnection current sheet.
  •  
5.
  • Chen, L. -J, et al. (författare)
  • Electron diffusion region during magnetopause reconnection with an intermediate guide field : Magnetospheric multiscale observations
  • 2017
  • Ingår i: Journal of Geophysical Research - Space Physics. - : Blackwell Publishing Ltd. - 2169-9380 .- 2169-9402. ; 122:5, s. 5235-5246
  • Tidskriftsartikel (refereegranskat)abstract
    • An electron diffusion region (EDR) in magnetic reconnection with a guide magnetic field approximately 0.2 times the reconnecting component is encountered by the four Magnetospheric Multiscale spacecraft at the Earth's magnetopause. The distinct substructures in the EDR on both sides of the reconnecting current sheet are visualized with electron distribution functions that are 2 orders of magnitude higher cadence than ever achieved to enable the following new findings: (1) Motion of the demagnetized electrons plays an important role to sustain the reconnection current and contributes to the dissipation due to the nonideal electric field, (2) the finite guide field dominates over the Hall magnetic field in an electron-scale region in the exhaust and modifies the electron flow dynamics in the EDR, (3) the reconnection current is in part carried by inflowing field-aligned electrons in the magnetosphere part of the EDR, and (4) the reconnection electric field measured by multiple spacecraft is uniform over at least eight electron skin depths and corresponds to a reconnection rate of approximately 0.1. The observations establish the first look at the structure of the EDR under a weak but not negligible guide field.
  •  
6.
  • Chen, L. -J, et al. (författare)
  • Electron Diffusion Regions in Magnetotail Reconnection Under Varying Guide Fields
  • 2019
  • Ingår i: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 46:12, s. 6230-6238
  • Tidskriftsartikel (refereegranskat)abstract
    • Kinetic structures of electron diffusion regions (EDRs) under finite guide fields in magnetotail reconnection are reported. The EDRs with guide fields 0.14–0.5 (in unit of the reconnecting component) are detected by the Magnetospheric Multiscale spacecraft. The key new features include the following: (1) cold inflowing electrons accelerated along the guide field and demagnetized at the magnetic field minimum while remaining a coherent population with a low perpendicular temperature, (2) wave fluctuations generating strong perpendicular electron flows followed by alternating parallel flows inside the reconnecting current sheet under an intermediate guide field, and (3) gyrophase bunched electrons with high parallel speeds leaving the X-line region. The normalized reconnection rates for the three EDRs range from 0.05 to 0.3. The measurements reveal that finite guide fields introduce new mechanisms to break the electron frozen-in condition.
  •  
7.
  • Eastwood, J. P., et al. (författare)
  • Ion-scale secondary flux ropes generated by magnetopause reconnection as resolved by MMS
  • 2016
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 43:10, s. 4716-4724
  • Tidskriftsartikel (refereegranskat)abstract
    • New Magnetospheric Multiscale (MMS) observations of small-scale (similar to 7 ion inertial length radius) flux transfer events (FTEs) at the dayside magnetopause are reported. The 10 km MMS tetrahedron size enables their structure and properties to be calculated using a variety of multispacecraft techniques, allowing them to be identified as flux ropes, whose flux content is small (similar to 22 kWb). The current density, calculated using plasma and magnetic field measurements independently, is found to be filamentary. Intercomparison of the plasma moments with electric and magnetic field measurements reveals structured non-frozen-in ion behavior. The data are further compared with a particle-in-cell simulation. It is concluded that these small-scale flux ropes, which are not seen to be growing, represent a distinct class of FTE which is generated on the magnetopause by secondary reconnection.
  •  
8.
  • Ergun, R. E., et al. (författare)
  • Magnetospheric Multiscale observations of large-amplitude, parallel, electrostatic waves associated with magnetic reconnection at the magnetopause
  • 2016
  • Ingår i: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 43:11, s. 5626-5634
  • Tidskriftsartikel (refereegranskat)abstract
    • We report observations from the Magnetospheric Multiscale satellites of large-amplitude, parallel, electrostatic waves associated with magnetic reconnection at the Earth's magnetopause. The observed waves have parallel electric fields (E-||) with amplitudes on the order of 100mV/m and display nonlinear characteristics that suggest a possible net E-||. These waves are observed within the ion diffusion region and adjacent to (within several electron skin depths) the electron diffusion region. They are in or near the magnetosphere side current layer. Simulation results support that the strong electrostatic linear and nonlinear wave activities appear to be driven by a two stream instability, which is a consequence of mixing cold (<10eV) plasma in the magnetosphere with warm (similar to 100eV) plasma from the magnetosheath on a freshly reconnected magnetic field line. The frequent observation of these waves suggests that cold plasma is often present near the magnetopause.
  •  
9.
  • Ergun, R. E., et al. (författare)
  • Magnetospheric Multiscale Satellites Observations of Parallel Electric Fields Associated with Magnetic Reconnection
  • 2016
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 116:23
  • Tidskriftsartikel (refereegranskat)abstract
    • We report observations from the Magnetospheric Multiscale satellites of parallel electric fields (E-vertical bar vertical bar) associated with magnetic reconnection in the subsolar region of the Earth's magnetopause. E-vertical bar vertical bar events near the electron diffusion region have amplitudes on the order of 100 mV/m, which are significantly larger than those predicted for an antiparallel reconnection electric field. This Letter addresses specific types of E-vertical bar vertical bar events, which appear as large-amplitude, near unipolar spikes that are associated with tangled, reconnected magnetic fields. These E-vertical bar vertical bar events are primarily in or near a current layer near the separatrix and are interpreted to be double layers that may be responsible for secondary reconnection in tangled magnetic fields or flux ropes. These results are telling of the three-dimensional nature of magnetopause reconnection and indicate that magnetopause reconnection may be often patchy and/or drive turbulence along the separatrix that results in flux ropes and/or tangled magnetic fields.
  •  
10.
  • Fuselier, S. A., et al. (författare)
  • Large-scale characteristics of reconnection diffusion regions and associated magnetopause crossings observed by MMS
  • 2017
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 122:5, s. 5466-5486
  • Tidskriftsartikel (refereegranskat)abstract
    • The Magnetospheric Multiscale (MMS) mission was designed to make observations in the very small electron diffusion region (EDR), where magnetic reconnection takes place. From a data set of over 4500 magnetopause crossings obtained in the first phase of the mission, MMS had encounters near or within 12 EDRs. These 12 events and associated magnetopause crossings are considered as a group to determine if they span the widest possible range of external and internal conditions (i.e., in the solar wind and magnetosphere). In addition, observations from MMS are used to determine if there are multiple X-lines present and also to provide information on X-line location relative to the spacecraft. These 12 events represent nearly the widest possible range of conditions at the dayside magnetopause. They occur over a wide range of local times and magnetic shear angles between the magnetosheath and magnetospheric magnetic fields. Most show evidence for multiple reconnection sites.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy