SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Khotyaintsev Yuri) ;pers:(Dorelli J.)"

Sökning: WFRF:(Khotyaintsev Yuri) > Dorelli J.

  • Resultat 1-10 av 48
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • André, Mats, et al. (författare)
  • Magnetic reconnection and modification of the Hall physics due to cold ions at the magnetopause
  • 2016
  • Ingår i: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 43:13, s. 6705-6712
  • Tidskriftsartikel (refereegranskat)abstract
    • Observations by the four Magnetospheric Multiscale spacecraft are used to investigate the Hall physics of a magnetopause magnetic reconnection separatrix layer. Inside this layer of currents and strong normal electric fields, cold (eV) ions of ionospheric origin can remain frozen-in together with the electrons. The cold ions reduce the Hall current. Using a generalized Ohm's law, the electric field is balanced by the sum of the terms corresponding to the Hall current, the vxB drifting cold ions, and the divergence of the electron pressure tensor. A mixture of hot and cold ions is common at the subsolar magnetopause. A mixture of length scales caused by a mixture of ion temperatures has significant effects on the Hall physics of magnetic reconnection.
  •  
2.
  • Argall, M. R., et al. (författare)
  • Electron Dynamics Within the Electron Diffusion Region of Asymmetric Reconnection
  • 2018
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 123:1, s. 146-162
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate the agyrotropic nature of electron distribution functions and their substructure to illuminate electron dynamics in a previously reported electron diffusion region (EDR) event. In particular, agyrotropy is examined as a function of energy to reveal detailed finite Larmor radius effects for the first time. It is shown that the previously reported approximate to 66eV agyrotropic "crescent" population that has been accelerated as a result of reconnection is evanescent in nature because it mixes with a denser, gyrotopic background. Meanwhile, accelerated agyrotropic populations at 250 and 500eV are more prominent because the background plasma at those energies is more tenuous. Agyrotropy at 250 and 500eV is also more persistent than at 66eV because of finite Larmor radius effects; agyrotropy is observed 2.5 ion inertial lengths from the EDR at 500eV, but only in close proximity to the EDR at 66eV. We also observe linearly polarized electrostatic waves leading up to and within the EDR. They have wave normal angles near 90 degrees, and their occurrence and intensity correlate with agyrotropy. Within the EDR, they modulate the flux of 500eV electrons travelling along the current layer. The net electric field intensifies the reconnection current, resulting in a flow of energy from the fields into the plasma. Plain Language Summary The process of reconnection involves an explosive transfer of magnetic energy into particle energy. When energetic particles contact modern technology such as satellites, cell phones, or other electronic devices, they can cause random errors and failures. Exactly how particles are energized via reconnection, however, is still unknown. Fortunately, the Magnetospheric Multiscale mission is finally able to detect and analyze reconnection processes. One recent finding is that energized particles take on a crescent-shaped configuration in the vicinity of reconnection and that this crescent shape is related to the energy conversion process. In our paper, we explain why the crescent shape has not been observed until now and inspect particle motions to determine what impact it has on energy conversion. When reconnection heats the plasma, the crescent shape forms from the cool, tenuous particles. As plasmas from different regions mix, dense, nonheated plasma obscures the crescent shape in our observations. The highest-energy particle population created by reconnection, though, also contains features of the crescent shape that are more persistent but appear less dramatically in the data.
  •  
3.
  • Breuillard, H., et al. (författare)
  • The Properties of Lion Roars and Electron Dynamics in Mirror Mode Waves Observed by the Magnetospheric MultiScale Mission
  • 2018
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 123:1, s. 93-103
  • Tidskriftsartikel (refereegranskat)abstract
    • Mirror mode waves are ubiquitous in the Earth's magnetosheath, in particular behind the quasi-perpendicular shock. Embedded in these nonlinear structures, intense lion roars are often observed. Lion roars are characterized by whistler wave packets at a frequency similar to 100Hz, which are thought to be generated in the magnetic field minima. In this study, we make use of the high time resolution instruments on board the Magnetospheric MultiScale mission to investigate these waves and the associated electron dynamics in the quasi-perpendicular magnetosheath on 22 January 2016. We show that despite a core electron parallel anisotropy, lion roars can be generated locally in the range 0.05-0.2f(ce) by the perpendicular anisotropy of electrons in a particular energy range. We also show that intense lion roars can be observed up to higher frequencies due to the sharp nonlinear peaks of the signal, which appear as sharp spikes in the dynamic spectra. As a result, a high sampling rate is needed to estimate correctly their amplitude, and the latter might have been underestimated in previous studies using lower time resolution instruments. We also present for the first-time 3-D high time resolution electron velocity distribution functions in mirror modes. We demonstrate that the dynamics of electrons trapped in the mirror mode structures are consistent with the Kivelson and Southwood (1996) model. However, these electrons can also interact with the embedded lion roars: first signatures of electron quasi-linear pitch angle diffusion and possible signatures of nonlinear interaction with high-amplitude wave packets are presented. These processes can lead to electron untrapping from mirror modes.
  •  
4.
  • Burch, J. L., et al. (författare)
  • Electron-scale measurements of magnetic reconnection in space
  • 2016
  • Ingår i: Science. - : AMER ASSOC ADVANCEMENT SCIENCE. - 0036-8075 .- 1095-9203. ; 352:6290, s. 1189-
  • Forskningsöversikt (refereegranskat)abstract
    • Magnetic reconnection is a fundamental physical process in plasmas whereby stored magnetic energy is converted into heat and kinetic energy of charged particles. Reconnection occurs in many astrophysical plasma environments and in laboratory plasmas. Using measurements with very high time resolution, NASA's Magnetospheric Multiscale (MMS) mission has found direct evidence for electron demagnetization and acceleration at sites along the sunward boundary of Earth's magnetosphere where the interplanetary magnetic field reconnects with the terrestrial magnetic field. We have (i) observed the conversion of magnetic energy to particle energy; (ii) measured the electric field and current, which together cause the dissipation of magnetic energy; and (iii) identified the electron population that carries the current as a result of demagnetization and acceleration within the reconnection diffusion/dissipation region.
  •  
5.
  • Chen, L. -J, et al. (författare)
  • Electron Bulk Acceleration and Thermalization at Earth's Quasiperpendicular Bow Shock
  • 2018
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 120:22
  • Tidskriftsartikel (refereegranskat)abstract
    • Electron heating at Earth's quasiperpendicular bow shock has been surmised to be due to the combined effects of a quasistatic electric potential and scattering through wave-particle interaction. Here we report the observation of electron distribution functions indicating a new electron heating process occurring at the leading edge of the shock front. Incident solar wind electrons are accelerated parallel to the magnetic field toward downstream, reaching an electron-ion relative drift speed exceeding the electron thermal speed. The bulk acceleration is associated with an electric field pulse embedded in a whistler-mode wave. The high electron-ion relative drift is relaxed primarily through a nonlinear current-driven instability. The relaxed distributions contain a beam traveling toward the shock as a remnant of the accelerated electrons. Similar distribution functions prevail throughout the shock transition layer, suggesting that the observed acceleration and thermalization is essential to the cross-shock electron heating. 
  •  
6.
  • Chen, L-J, et al. (författare)
  • Lower-Hybrid Drift Waves Driving Electron Nongyrotropic Heating and Vortical Flows in a Magnetic Reconnection Layer
  • 2020
  • Ingår i: Physical Review Letters. - : American Physical Society (APS). - 0031-9007 .- 1079-7114. ; 125:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report measurements of lower-hybrid drift waves driving electron heating and vortical flows in an electron-scale reconnection layer under a guide field. Electrons accelerated by the electrostatic potential of the waves exhibit perpendicular and nongyrotropic heating. The vortical flows generate magnetic field perturbations comparable to the guide field magnitude. The measurements reveal a new regime of electron-wave interaction and how this interaction modifies the electron dynamics in the reconnection layer.
  •  
7.
  • Ergun, R. E., et al. (författare)
  • Magnetospheric Multiscale observations of large-amplitude, parallel, electrostatic waves associated with magnetic reconnection at the magnetopause
  • 2016
  • Ingår i: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 43:11, s. 5626-5634
  • Tidskriftsartikel (refereegranskat)abstract
    • We report observations from the Magnetospheric Multiscale satellites of large-amplitude, parallel, electrostatic waves associated with magnetic reconnection at the Earth's magnetopause. The observed waves have parallel electric fields (E-||) with amplitudes on the order of 100mV/m and display nonlinear characteristics that suggest a possible net E-||. These waves are observed within the ion diffusion region and adjacent to (within several electron skin depths) the electron diffusion region. They are in or near the magnetosphere side current layer. Simulation results support that the strong electrostatic linear and nonlinear wave activities appear to be driven by a two stream instability, which is a consequence of mixing cold (<10eV) plasma in the magnetosphere with warm (similar to 100eV) plasma from the magnetosheath on a freshly reconnected magnetic field line. The frequent observation of these waves suggests that cold plasma is often present near the magnetopause.
  •  
8.
  • Eriksson, S., et al. (författare)
  • Magnetospheric Multiscale observations of magnetic reconnection associated with Kelvin-Helmholtz waves
  • 2016
  • Ingår i: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 43:11, s. 5606-5615
  • Tidskriftsartikel (refereegranskat)abstract
    • The four Magnetospheric Multiscale (MMS) spacecraft recorded the first direct evidence of reconnection exhausts associated with Kelvin-Helmholtz (KH) waves at the duskside magnetopause on 8 September 2015 which allows for local mass and energy transport across the flank magnetopause. Pressure anisotropy-weighted Walen analyses confirmed in-plane exhausts across 22 of 42 KH-related trailing magnetopause current sheets (CSs). Twenty-one jets were observed by all spacecraft, with small variations in ion velocity, along the same sunward or antisunward direction with nearly equal probability. One exhaust was only observed by the MMS-1,2 pair, while MMS-3,4 traversed a narrow CS (1.5 ion inertial length) in the vicinity of an electron diffusion region. The exhausts were locally 2-D planar in nature as MMS-1,2 observed almost identical signatures separated along the guide-field. Asymmetric magnetic and electric Hall fields are reported in agreement with a strong guide-field and a weak plasma density asymmetry across the magnetopause CS.
  •  
9.
  • Graham, Daniel B., et al. (författare)
  • Electron currents and heating in the ion diffusion region of asymmetric reconnection
  • 2016
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 43:10, s. 4691-4700
  • Tidskriftsartikel (refereegranskat)abstract
    • In this letter the structure of the ion diffusion region of magnetic reconnection at Earth's magnetopause is investigated using the Magnetospheric Multiscale (MMS) spacecraft. The ion diffusion region is characterized by a strong DC electric field, approximately equal to the Hall electric field, intense currents, and electron heating parallel to the background magnetic field. Current structures well below ion spatial scales are resolved, and the electron motion associated with lower hybrid drift waves is shown to contribute significantly to the total current density. The electron heating is shown to be consistent with large-scale parallel electric fields trapping and accelerating electrons, rather than wave-particle interactions. These results show that sub-ion scale processes occur in the ion diffusion region and are important for understanding electron heating and acceleration.
  •  
10.
  • Graham, Daniel B., et al. (författare)
  • Lower hybrid waves in the ion diffusion and magnetospheric inflow regions
  • 2017
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 122:1, s. 517-533
  • Tidskriftsartikel (refereegranskat)abstract
    • The role and properties of lower hybrid waves in the ion diffusion region and magnetospheric inflow region of asymmetric reconnection are investigated using the Magnetospheric Multiscale (MMS) mission. Two distinct groups of lower hybrid waves are observed in the ion diffusion region and magnetospheric inflow region, which have distinct properties and propagate in opposite directions along the magnetopause. One group develops near the ion edge in the magnetospheric inflow, where magnetosheath ions enter the magnetosphere through the finite gyroradius effect and are driven by the ion-ion cross-field instability due to the interaction between the magnetosheath ions and cold magnetospheric ions. This leads to heating of the cold magnetospheric ions. The second group develops at the sharpest density gradient, where the Hall electric field is observed and is driven by the lower hybrid drift instability. These drift waves produce cross-field particle diffusion, enabling magnetosheath electrons to enter the magnetospheric inflow region thereby broadening the density gradient in the ion diffusion region.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 48

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy