SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kiel Douglas P.) "

Sökning: WFRF:(Kiel Douglas P.)

  • Resultat 1-10 av 36
  • [1]234Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zillikens, M. Carola, et al. (författare)
  • Large meta-analysis of genome-wide association studies identifies five loci for lean body mass
  • 2017
  • Ingår i: Nature Communications. - NATURE PUBLISHING GROUP. - 2041-1723 .- 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Lean body mass, consisting mostly of skeletal muscle, is important for healthy aging. We performed a genome-wide association study for whole body (20 cohorts of European ancestry with n = 38,292) and appendicular (arms and legs) lean body mass (n = 28,330) measured using dual energy X-ray absorptiometry or bioelectrical impedance analysis, adjusted for sex, age, height, and fat mass. Twenty-one single-nucleotide polymorphisms were significantly associated with lean body mass either genome wide (p < 5 x 10(-8)) or suggestively genome wide (p < 2.3 x 10(-6)). Replication in 63,475 (47,227 of European ancestry) individuals from 33 cohorts for whole body lean body mass and in 45,090 (42,360 of European ancestry) subjects from 25 cohorts for appendicular lean body mass was successful for five single-nucleotide polymorphisms in/ near HSD17B11, VCAN, ADAMTSL3, IRS1, and FTO for total lean body mass and for three single-nucleotide polymorphisms in/ near VCAN, ADAMTSL3, and IRS1 for appendicular lean body mass. Our findings provide new insight into the genetics of lean body mass.
2.
  • Estrada, Karol, et al. (författare)
  • Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture.
  • 2012
  • Ingår i: Nature genetics. - 1546-1718. ; 44:5, s. 491-501
  • Tidskriftsartikel (refereegranskat)abstract
    • Bone mineral density (BMD) is the most widely used predictor of fracture risk. We performed the largest meta-analysis to date on lumbar spine and femoral neck BMD, including 17 genome-wide association studies and 32,961 individuals of European and east Asian ancestry. We tested the top BMD-associated markers for replication in 50,933 independent subjects and for association with risk of low-trauma fracture in 31,016 individuals with a history of fracture (cases) and 102,444 controls. We identified 56 loci (32 new) associated with BMD at genome-wide significance (P < 5 x 10(-8)). Several of these factors cluster within the RANK-RANKL-OPG, mesenchymal stem cell differentiation, endochondral ossification and Wnt signaling pathways. However, we also discovered loci that were localized to genes not known to have a role in bone biology. Fourteen BMD-associated loci were also associated with fracture risk (P < 5 x 10(-4), Bonferroni corrected), of which six reached P < 5 x 10(-8), including at 18p11.21 (FAM210A), 7q21.3 (SLC25A13), 11q13.2 (LRP5), 4q22.1 (MEPE), 2p16.2 (SPTBN1) and 10q21.1 (DKK1). These findings shed light on the genetic architecture and pathophysiological mechanisms underlying BMD variation and fracture susceptibility.
  •  
3.
  • Perry, John R. B., et al. (författare)
  • Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche
  • 2014
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 514:7520, s. 92-
  • Tidskriftsartikel (refereegranskat)abstract
    • Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-causemortality(1). Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation(2,3), but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 x 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and gamma-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition.
  •  
4.
  • Ben-Avraham, Dan, et al. (författare)
  • The complex genetics of gait speed : Genome-wide meta-analysis approach
  • 2017
  • Ingår i: Aging. - Impact Journals, LLC. - 1945-4589. ; 9:1, s. 209-246
  • Tidskriftsartikel (refereegranskat)abstract
    • Emerging evidence suggests that the basis for variation in late-life mobility is attributable, in part, to genetic factors, which may become increasingly important with age. Our objective was to systematically assess the contribution of genetic variation to gait speed in older individuals. We conducted a meta-analysis of gait speed GWASs in 31,478 older adults from 17 cohorts of the CHARGE consortium, and validated our results in 2,588 older adults from 4 independent studies. We followed our initial discoveries with network and eQTL analysis of candidate signals in tissues. The meta-analysis resulted in a list of 536 suggestive genome wide significant SNPs in or near 69 genes. Further interrogation with Pathway Analysis placed gait speed as a polygenic complex trait in five major networks. Subsequent eQTL analysis revealed several SNPs significantly associated with the expression of PRSS16, WDSUB1 and PTPRT, which in addition to the meta-analysis and pathway suggested that genetic effects on gait speed may occur through synaptic function and neuronal development pathways. No genome-wide significant signals for gait speed were identified from this moderately large sample of older adults, suggesting that more refined physical function phenotypes will be needed to identify the genetic basis of gait speed in aging.
  •  
5.
  • Conley, Robert B., et al. (författare)
  • Secondary Fracture Prevention : Consensus Clinical Recommendations from a Multistakeholder Coalition
  • 2020
  • Ingår i: Journal of Orthopaedic Trauma. - Lippincott Williams & Wilkins. - 0890-5339. ; 34:4, s. 125-141
  • Tidskriftsartikel (refereegranskat)abstract
    • Osteoporosis-related fractures are undertreated, due in part to misinformation about recommended approaches to patient care and discrepancies among treatment guidelines. To help bridge this gap and improve patient outcomes, the American Society for Bone and Mineral Research assembled a multistakeholder coalition to develop clinical recommendations for the optimal prevention of secondary fractureamong people aged 65 years and older with a hip or vertebral fracture. The coalition developed 13 recommendations (7 primary and 6 secondary) strongly supported by the empirical literature. The coalition recommends increased communication with patients regarding fracture risk, mortality and morbidity outcomes, and fracture risk reduction. Risk assessment (including fall history) should occur at regular intervals with referral to physical and/or occupational therapy as appropriate. Oral, intravenous, andsubcutaneous pharmacotherapies are efficaciousandcanreduce risk of future fracture.Patientsneededucation,however, about thebenefitsandrisks of both treatment and not receiving treatment. Oral bisphosphonates alendronate and risedronate are first-line options and are generally well tolerated; otherwise, intravenous zoledronic acid and subcutaneous denosumab can be considered. Anabolic agents are expensive butmay be beneficial for selected patients at high risk.Optimal duration of pharmacotherapy is unknown but because the risk for second fractures is highest in the earlypost-fractureperiod,prompt treatment is recommended.Adequate dietary or supplemental vitaminDand calciumintake shouldbe assured. Individuals beingtreatedfor osteoporosis shouldbe reevaluated for fracture risk routinely, includingvia patienteducationabout osteoporosisandfracturesandmonitoringfor adverse treatment effects.Patients shouldbestronglyencouraged to avoid tobacco, consume alcohol inmoderation atmost, and engage in regular exercise and fall prevention strategies. Finally, referral to endocrinologists or other osteoporosis specialists may be warranted for individuals who experience repeated fracture or bone loss and those with complicating comorbidities (eg, hyperparathyroidism, chronic kidney disease).
  •  
6.
  • Elks, Cathy E, et al. (författare)
  • Thirty new loci for age at menarche identified by a meta-analysis of genome-wide association studies
  • 2010
  • Ingår i: Nature genetics. - 1546-1718. ; 42:12, s. 1077-U73
  • Tidskriftsartikel (refereegranskat)abstract
    • To identify loci for age at menarche, we performed a meta-analysis of 32 genome-wide association studies in 87,802 women of European descent, with replication in up to 14,731 women. In addition to the known loci at LIN28B (P = 5.4 × 10⁻⁶⁰) and 9q31.2 (P = 2.2 × 10⁻³³), we identified 30 new menarche loci (all P < 5 × 10⁻⁸) and found suggestive evidence for a further 10 loci (P < 1.9 × 10⁻⁶). The new loci included four previously associated with body mass index (in or near FTO, SEC16B, TRA2B and TMEM18), three in or near other genes implicated in energy homeostasis (BSX, CRTC1 and MCHR2) and three in or near genes implicated in hormonal regulation (INHBA, PCSK2 and RXRG). Ingenuity and gene-set enrichment pathway analyses identified coenzyme A and fatty acid biosynthesis as biological processes related to menarche timing.
  •  
7.
  • Medina-Gomez, Carolina, et al. (författare)
  • Life-Course Genome-wide Association Study Meta-analysis of Total Body BMD and Assessment of Age-Specific Effects
  • 2018
  • Ingår i: American Journal of Human Genetics. - Cell Press. - 0002-9297. ; 102:1, s. 88-102
  • Tidskriftsartikel (refereegranskat)abstract
    • Bone mineral density (BMD) assessed by DXA is used to evaluate bone health. In children, total body (TB) measurements are commonly used; in older individuals, BMD at the lumbar spine (LS) and femoral neck (FN) is used to diagnose osteoporosis. To date, genetic variants in more than 60 loci have been identified as associated with BMD. To investigate the genetic determinants of TB-BMD variation along the life course and test for age-specific effects, we performed a meta-analysis of 30 genome-wide association studies (GWASs) of TB-BMD including 66,628 individuals overall and divided across five age strata, each spanning 15 years. We identified variants associated with TB-BMD at 80 loci, of which 36 have not been previously identified; overall, they explain approximately 10% of the TB-BMD variance when combining all age groups and influence the risk of fracture. Pathway and enrichment analysis of the association signals showed clustering within gene sets implicated in the regulation of cell growth and SMAD proteins, overexpressed in the musculoskeletal system, and enriched in enhancer and promoter regions. These findings reveal TB-BMD as a relevant trait for genetic studies of osteoporosis, enabling the identification of variants and pathways influencing different bone compartments. Only variants in ESR1 and close proximity to RANKL showed a clear effect dependency on age. This most likely indicates that the majority of genetic variants identified influence BMD early in life and that their effect can be captured throughout the life course.
  •  
8.
  • Oei, Ling, et al. (författare)
  • A genome-wide copy number association study of osteoporotic fractures points to the 6p25.1 locus
  • 2014
  • Ingår i: Journal of Medical Genetics. - BMJ Publishing Group. - 0022-2593. ; 51:2, s. 122-131
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Osteoporosis is a systemic skeletal disease characterised by reduced bone mineral density and increased susceptibility to fracture; these traits are highly heritable. Both common and rare copy number variants (CNVs) potentially affect the function of genes and may influence disease risk.AIM: To identify CNVs associated with osteoporotic bone fracture risk.METHOD: We performed a genome-wide CNV association study in 5178 individuals from a prospective cohort in the Netherlands, including 809 osteoporotic fracture cases, and performed in silico lookups and de novo genotyping to replicate in several independent studies.RESULTS: A rare (population prevalence 0.14%, 95% CI 0.03% to 0.24%) 210 kb deletion located on chromosome 6p25.1 was associated with the risk of fracture (OR 32.58, 95% CI 3.95 to 1488.89; p=8.69×10(-5)). We performed an in silico meta-analysis in four studies with CNV microarray data and the association with fracture risk was replicated (OR 3.11, 95% CI 1.01 to 8.22; p=0.02). The prevalence of this deletion showed geographic diversity, being absent in additional samples from Australia, Canada, Poland, Iceland, Denmark, and Sweden, but present in the Netherlands (0.34%), Spain (0.33%), USA (0.23%), England (0.15%), Scotland (0.10%), and Ireland (0.06%), with insufficient evidence for association with fracture risk.CONCLUSIONS: These results suggest that deletions in the 6p25.1 locus may predispose to higher risk of fracture in a subset of populations of European origin; larger and geographically restricted studies will be needed to confirm this regional association. This is a first step towards the evaluation of the role of rare CNVs in osteoporosis.
  •  
9.
  • Zheng, Hou-Feng, et al. (författare)
  • Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture
  • 2015
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 526:7571, s. 112-
  • Tidskriftsartikel (refereegranskat)abstract
    • The extent to which low-frequency (minor allele frequency (MAF) between 1-5%) and rare (MAF <= 1%) variants contribute to complex traits and disease in the general population is mainly unknown. Bone mineral density (BMD) is highly heritable, a major predictor of osteoporotic fractures, and has been previously associated with common genetic variants(1-8), as well as rare, population specific, coding variants(9). Here we identify novel non-coding genetic variants with large effects on BMD (n(total) = 53,236) and fracture (n(total) = 508,253) in individuals of European ancestry from the general population. Associations for BMD were derived from whole-genome sequencing (n = 2,882 from UK10K (ref. 10); a population-based genome sequencing consortium), whole-exome sequencing (n = 3,549), deep imputation of genotyped samples using a combined UK10K/1000 Genomes reference panel (n = 26,534), and de novo replication genotyping (n = 20,271). We identified a low-frequency non-coding variant near a novel locus, EN1, with an effect size fourfold larger than the mean of previously reported common variants for lumbar spine BMD8 (rs11692564(T), MAF51.6%, replication effect size510.20 s.d., P-meta = 2 x 10(-14)), which was also associated with a decreased risk of fracture (odds ratio = 0.85; P = 2 x 10(-11); ncases = 98,742 and ncontrols = 409,511). Using an En1cre/flox mouse model, we observed that conditional loss of En1 results in low bone mass, probably as a consequence of high bone turnover. We also identified a novel low frequency non-coding variant with large effects on BMD near WNT16 (rs148771817(T), MAF = 1.2%, replication effect size +10.41 s.d., P-meta = 1 x 10(-11)). In general, there was an excess of association signals arising from deleterious coding and conserved non-coding variants. These findings provide evidence that low-frequency non-coding variants have large effects on BMD and fracture, thereby providing rationale for whole-genome sequencing and improved imputation reference panels to study the genetic architecture of complex traits and disease in the general population.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 36
  • [1]234Nästa
Åtkomst
fritt online (9)
Typ av publikation
tidskriftsartikel (35)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (36)
Författare/redaktör
Kiel, Douglas P (35)
Karasik, David (28)
Rivadeneira, Fernand ... (27)
Uitterlinden, Andre ... (22)
Hofman, Albert, (21)
Ohlsson, Claes (20)
visa fler...
Harris, Tamara B. (19)
Richards, J Brent (18)
Hsu, Yi-Hsiang (16)
Medina-Gomez, Caroli ... (16)
Vandenput, Liesbeth (15)
Lorentzon, Mattias, (14)
Zillikens, M. Carola (14)
Liu, Yongmei (14)
Karlsson, Magnus, (12)
Gudnason, Vilmundur, (12)
Stefansson, Kari (12)
Liu, Ching-Ti (12)
Soranzo, Nicole (11)
Smith, Albert V., (11)
Van Duijn, Cornelia ... (11)
Mellström, Dan, 1945 ... (11)
Estrada, Karol (11)
Ljunggren, Östen, (11)
Stolk, Lisette, (11)
Murabito, Joanne M (11)
Amin, Najaf, (10)
Ferrucci, Luigi, (10)
Psaty, Bruce M., (10)
Ralston, Stuart H (10)
Eriksson, Joel, (10)
Thorsteinsdottir, Un ... (10)
Khaw, Kay-Tee (9)
Mangino, Massimo (9)
Oostra, Ben A. (9)
Perry, John R. B. (9)
Cupples, L. Adrienne (9)
Spector, Timothy D. (9)
Cummings, Steven R (9)
Evans, David M (9)
Orwoll, Eric S (9)
Lunetta, Kathryn L (9)
Ohlsson, Claes, 1965 ... (8)
Mellström, Dan, (8)
Spector, Tim D. (8)
Thorleifsson, Gudmar (8)
Wilson, James F. (8)
Mellstrom, Dan (8)
Evans, Daniel S (8)
Koller, Daniel L. (8)
visa färre...
Lärosäte
Göteborgs universitet (29)
Lunds universitet (22)
Uppsala universitet (19)
Umeå universitet (8)
Karolinska Institutet (4)
Språk
Engelska (36)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (36)
Naturvetenskap (5)

År

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy