SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kim Hyungjun) "

Sökning: WFRF:(Kim Hyungjun)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arndt, D. S., et al. (författare)
  • State of the Climate in 2016
  • 2017
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - 0003-0007 .- 1520-0477. ; 98:8, s. S1-S280
  • Tidskriftsartikel (refereegranskat)abstract
    • In 2016, the dominant greenhouse gases released into Earth's atmosphere-carbon dioxide, methane, and nitrous oxide-continued to increase and reach new record highs. The 3.5 +/- 0.1 ppm rise in global annual mean carbon dioxide from 2015 to 2016 was the largest annual increase observed in the 58-year measurement record. The annual global average carbon dioxide concentration at Earth's surface surpassed 400 ppm (402.9 +/- 0.1 ppm) for the first time in the modern atmospheric measurement record and in ice core records dating back as far as 800000 years. One of the strongest El Nino events since at least 1950 dissipated in spring, and a weak La Nina evolved later in the year. Owing at least in part to the combination of El Nino conditions early in the year and a long-term upward trend, Earth's surface observed record warmth for a third consecutive year, albeit by a much slimmer margin than by which that record was set in 2015. Above Earth's surface, the annual lower troposphere temperature was record high according to all datasets analyzed, while the lower stratospheric temperature was record low according to most of the in situ and satellite datasets. Several countries, including Mexico and India, reported record high annual temperatures while many others observed near-record highs. A week-long heat wave at the end of April over the northern and eastern Indian peninsula, with temperatures surpassing 44 degrees C, contributed to a water crisis for 330 million people and to 300 fatalities. In the Arctic the 2016 land surface temperature was 2.0 degrees C above the 1981-2010 average, breaking the previous record of 2007, 2011, and 2015 by 0.8 degrees C, representing a 3.5 degrees C increase since the record began in 1900. The increasing temperatures have led to decreasing Arctic sea ice extent and thickness. On 24 March, the sea ice extent at the end of the growth season saw its lowest maximum in the 37-year satellite record, tying with 2015 at 7.2% below the 1981-2010 average. The September 2016 Arctic sea ice minimum extent tied with 2007 for the second lowest value on record, 33% lower than the 1981-2010 average. Arctic sea ice cover remains relatively young and thin, making it vulnerable to continued extensive melt. The mass of the Greenland Ice Sheet, which has the capacity to contribute similar to 7 m to sea level rise, reached a record low value. The onset of its surface melt was the second earliest, after 2012, in the 37-year satellite record. Sea surface temperature was record high at the global scale, surpassing the previous record of 2015 by about 0.01 degrees C. The global sea surface temperature trend for the 21st century-to-date of +0.162 degrees C decade(-1) is much higher than the longer term 1950-2016 trend of +0.100 degrees C decade(-1). Global annual mean sea level also reached a new record high, marking the sixth consecutive year of increase. Global annual ocean heat content saw a slight drop compared to the record high in 2015. Alpine glacier retreat continued around the globe, and preliminary data indicate that 2016 is the 37th consecutive year of negative annual mass balance. Across the Northern Hemisphere, snow cover for each month from February to June was among its four least extensive in the 47-year satellite record. Continuing a pattern below the surface, record high temperatures at 20-m depth were measured at all permafrost observatories on the North Slope of Alaska and at the Canadian observatory on northernmost Ellesmere Island. In the Antarctic, record low monthly surface pressures were broken at many stations, with the southern annular mode setting record high index values in March and June. Monthly high surface pressure records for August and November were set at several stations. During this period, record low daily and monthly sea ice extents were observed, with the November mean sea ice extent more than 5 standard deviations below the 1981-2010 average. These record low sea ice values contrast sharply with the record high values observed during 2012-14. Over the region, springtime Antarctic stratospheric ozone depletion was less severe relative to the 1991-2006 average, but ozone levels were still low compared to pre-1990 levels. Closer to the equator, 93 named tropical storms were observed during 2016, above the 1981-2010 average of 82, but fewer than the 101 storms recorded in 2015. Three basins-the North Atlantic, and eastern and western North Pacific-experienced above-normal activity in 2016. The Australian basin recorded its least active season since the beginning of the satellite era in 1970. Overall, four tropical cyclones reached the Saffir-Simpson category 5 intensity level. The strong El Nino at the beginning of the year that transitioned to a weak La Nina contributed to enhanced precipitation variability around the world. Wet conditions were observed throughout the year across southern South America, causing repeated heavy flooding in Argentina, Paraguay, and Uruguay. Wetter-than-usual conditions were also observed for eastern Europe and central Asia, alleviating the drought conditions of 2014 and 2015 in southern Russia. In the United States, California had its first wetter-than-average year since 2012, after being plagued by drought for several years. Even so, the area covered by drought in 2016 at the global scale was among the largest in the post-1950 record. For each month, at least 12% of land surfaces experienced severe drought conditions or worse, the longest such stretch in the record. In northeastern Brazil, drought conditions were observed for the fifth consecutive year, making this the longest drought on record in the region. Dry conditions were also observed in western Bolivia and Peru; it was Bolivia's worst drought in the past 25 years. In May, with abnormally warm and dry conditions already prevailing over western Canada for about a year, the human-induced Fort McMurray wildfire burned nearly 590000 hectares and became the costliest disaster in Canadian history, with $3 billion (U.S. dollars) in insured losses.
  •  
2.
  • Arndt, D. S., et al. (författare)
  • STATE OF THE CLIMATE IN 2017
  • 2018
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - : American Meteorological Society. - 0003-0007 .- 1520-0477. ; 99:8, s. S1-S310
  • Forskningsöversikt (refereegranskat)
  •  
3.
  • Zhang, Chao, et al. (författare)
  • 2023 Roadmap on molecular modelling of electrochemical energy materials
  • 2023
  • Ingår i: Journal of Physics. - : Institute of Physics Publishing (IOPP). - 2515-7655. ; 5:4
  • Tidskriftsartikel (refereegranskat)abstract
    • New materials for electrochemical energy storage and conversion are the key to the electrification and sustainable development of our modern societies. Molecular modelling based on the principles of quantum mechanics and statistical mechanics as well as empowered by machine learning techniques can help us to understand, control and design electrochemical energy materials at atomistic precision. Therefore, this roadmap, which is a collection of authoritative opinions, serves as a gateway for both the experts and the beginners to have a quick overview of the current status and corresponding challenges in molecular modelling of electrochemical energy materials for batteries, supercapacitors, CO2 reduction reaction, and fuel cell applications.
  •  
4.
  • Cho, Hae Sung, et al. (författare)
  • Study of Argon Gas Adsorption in Ordered Mesoporous MFI Zeolite Framework
  • 2012
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 116:48, s. 25300-25308
  • Tidskriftsartikel (refereegranskat)abstract
    • An ordered mesoporous MFI zeolite material (Meso-MFI) was prepared by using CMK-type mesoporous carbons as a hard template. The Meso-MFI exhibits both structural and adsorption differences compared to the conventional bulk MFI zeolite. To study the argon (Ar) adsorption process in Meso-MFI, an in situ gas adsorption powder X-ray diffraction (XRD) analysis was performed using synchrotron X-ray source. Structural rearrangement of the mesoporous MFI zeolite upon Ar adsorption at low temperature (83 K) was intensively studied together with Ar adsorption process in Meso-MFI. We observed that a structural transition of the Meso-MFI zeolite framework from monoclinic (P2(1)/n) to orthorhombic (Pnma) occurred at around 126 Pa at 83 K. Positions of Ar atoms are determined as a function of the Ar gas pressure through Rietveld refinement of powder XRD data. Ar atoms are observed at straight channels, sinusoidal channels, and the intersection of these channels at low pressure. As gas pressure increases, Ar atoms in the pore intersection are pulled off from the intersection toward the straight and sinusoidal channels. The pore shape of the straight channel is changed accordingly with the amount of adsorbed Ar atoms within the pores from circular to oval. These results indicate that Ar adsorption induces not only continuous rearrangement of framework atoms but also symmetry change in the Meso-MFI. A molecular simulation study combined with Rietveld refinement of in situ XRD data provided a full understanding of the adsorption process of Ar in Meso-MFI.
  •  
5.
  • Luo, Fei, et al. (författare)
  • Summertime Rossby waves in climate models : Substantial biases in surface imprint associated with small biases in upper-level circulation
  • 2022
  • Ingår i: Weather and Climate Dynamics. - : Copernicus GmbH. - 2698-4016. ; 3:3, s. 905-935
  • Tidskriftsartikel (refereegranskat)abstract
    • In boreal summer, circumglobal Rossby waves can promote stagnating weather systems that favor extreme events like heat waves or droughts. Recent work showed that amplified Rossby wavenumber 5 and 7 show phase-locking behavior which can trigger simultaneous warm anomalies in different breadbasket regions in the Northern Hemisphere. These types of wave patterns thus pose a potential threat to human health and ecosystems. The representation of such persistent wave events in summer and their surface anomalies in general circulation models (GCMs) has not been systematically analyzed. Here we validate the representation of wavenumbers 1-10 in three state-of-The-Art global climate models (EC-Earth, CESM, and MIROC), quantify their biases, and provide insights into the underlying physical reasons for the biases. To do so, the ExtremeX experiments output data were used, consisting of (1) historic simulations with a freely running atmosphere with prescribed ocean and experiments that additionally (2) nudge towards the observed upper-level horizontal winds, (3) prescribe soil moisture conditions, or (4) do both. The experiments are used to trace the sources of the model biases to either the large-scale atmospheric circulation or surface feedback processes. Focusing on wave 5 and wave 7, we show that while the wave's position and magnitude are generally well represented during high-Amplitude (>g 1.5 SD) episodes, the associated surface anomalies are substantially underestimated. Near-surface temperature, precipitation and mean sea level pressure are typically underestimated by a factor of 1.5 in terms of normalized standard deviations. The correlations and normalized standard deviations for surface anomalies do not improve if the soil moisture is prescribed. However, the surface biases are almost entirely removed when the upper-level atmospheric circulation is nudged. When both prescribing soil moisture and nudging the upper-level atmosphere, then the surface biases remain quite similar to the experiment with a nudged atmosphere only. We conclude that the near-surface biases in temperature and precipitation are in the first place related to biases in the upper-level circulation. Thus, relatively small biases in the models' representation of the upper-level waves can strongly affect associated temperature and precipitation anomalies.
  •  
6.
  • Schewe, Jacob, et al. (författare)
  • State-of-the-art global models underestimate impacts from climate extremes
  • 2019
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Global impact models represent process-level understanding of how natural and human systems may be affected by climate change. Their projections are used in integrated assessments of climate change. Here we test, for the first time, systematically across many important systems, how well such impact models capture the impacts of extreme climate conditions. Using the 2003 European heat wave and drought as a historical analogue for comparable events in the future, we find that a majority of models underestimate the extremeness of impacts in important sectors such as agriculture, terrestrial ecosystems, and heat-related human mortality, while impacts on water resources and hydropower are overestimated in some river basins; and the spread across models is often large. This has important implications for economic assessments of climate change impacts that rely on these models. It also means that societal risks from future extreme events may be greater than previously thought.
  •  
7.
  • Wartenburger, Richard, et al. (författare)
  • Evapotranspiration simulations in ISIMIP2a-Evaluation of spatio-temporal characteristics with a comprehensive ensemble of independent datasets
  • 2018
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 13:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Actual land evapotranspiration (ET) is a key component of the global hydrological cycle and an essential variable determining the evolution of hydrological extreme events under different climate change scenarios. However, recently available ET products show persistent uncertainties that are impeding a precise attribution of human-induced climate change. Here, we aim at comparing a range of independent global monthly land ET estimates with historical model simulations from the global water, agriculture, and biomes sectors participating in the second phase of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2a). Among the independent estimates, we use the EartH2Observe Tier-1 dataset (E2O), two commonly used reanalyses, a pre-compiled ensemble product (LandFlux-EVAL), and an updated collection of recently published datasets that algorithmically derive ET from observations or observations-based estimates (diagnostic datasets). A cluster analysis is applied in order to identify spatio-temporal differences among all datasets and to thus identify factors that dominate overall uncertainties. The clustering is controlled by several factors including the model choice, the meteorological forcing used to drive the assessed models, the data category (models participating in the different sectors of ISIMIP2a, E2O models, diagnostic estimates, reanalysis-based estimates or composite products), the ET scheme, and the number of soil layers in the models. By using these factors to explain spatial and spatio-temporal variabilities in ET, we find that the model choice mostly dominates (24%-40% of variance explained), except for spatio-temporal patterns of total ET, where the forcing explains the largest fraction of the variance (29%). The most dominant clusters of datasets are further compared with individual diagnostic and reanalysis-based estimates to assess their representation of selected heat waves and droughts in the Great Plains, Central Europe and western Russia. Although most of the ET estimates capture these extreme events, the generally large spread among the entire ensemble indicates substantial uncertainties.
  •  
8.
  • Wehrli, Kathrin, et al. (författare)
  • The ExtremeX global climate model experiment : investigating thermodynamic and dynamic processes contributing to weather and climate extremes
  • 2022
  • Ingår i: Earth System Dynamics. - : Copernicus GmbH. - 2190-4979 .- 2190-4987. ; 13:3, s. 1167-1196
  • Tidskriftsartikel (refereegranskat)abstract
    • The mechanisms leading to the occurrence of extreme weather and climate events are varied and complex. They generally encompass a combination of dynamic and thermodynamic processes, as well as drivers external to the climate system, such as anthropogenic greenhouse gas emissions and land use change. Here we present the ExtremeX multi-model intercomparison experiment, which was designed to investigate the contribution of dynamic and thermodynamic processes to recent weather and climate extremes. The numerical experiments are performed with three Earth system models: CESM, MIROC, and EC-Earth. They include control experiments with interactive atmosphere and land surface conditions, as well as experiments wherein the atmospheric circulation, soil moisture, or both are constrained using observation-based data. The temporal evolution and magnitude of temperature anomalies during heatwaves are well represented in the experiments with a constrained atmosphere. However, the magnitude of mean climatological biases in temperature and precipitation are not greatly reduced in any of the constrained experiments due to persistent or newly introduced biases. This highlights the importance of error compensations and tuning in the standard model versions. To show one possible application, ExtremeX is used to identify the main drivers of heatwaves and warm spells. The results reveal that both atmospheric circulation patterns and soil moisture conditions substantially contribute to the occurrence of these events. Soil moisture effects are particularly important in the tropics, the monsoon areas, and the Great Plains of the United States, whereas atmospheric circulation effects are major drivers in other midlatitude and high-latitude regions.
  •  
9.
  • Zhang, Peng, et al. (författare)
  • Abrupt shift to hotter and drier climate over inner East Asia beyond the tipping point
  • 2020
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 370:6520, s. 1095-1099
  • Tidskriftsartikel (refereegranskat)abstract
    • Unprecedented heatwave-drought concurrences in the past two decades have been reported over inner East Asia. Tree-ring–based reconstructions of heatwaves and soil moisture for the past 260 years reveal an abrupt shift to hotter and drier climate over this region. Enhanced land-atmosphere coupling, associated with persistent soil moisture deficit, appears to intensify surface warming and anticyclonic circulation anomalies, fueling heatwaves that exacerbate soil drying. Our analysis demonstrates that the magnitude of the warm and dry anomalies compounding in the recent two decades is unprecedented over the quarter of a millennium, and this trend clearly exceeds the natural variability range. The “hockey stick”–like change warns that the warming and drying concurrence is potentially irreversible beyond a tipping point in the East Asian climate system.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy