SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(King E) ;lar1:(lnu)"

Search: WFRF:(King E) > Linnaeus University

  • Result 1-10 of 44
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Abdalla, H., et al. (author)
  • Gamma-ray blazar spectra with HESS II mono analysis : The case of PKS2155-304 and PG1553+113
  • 2017
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 600
  • Journal article (peer-reviewed)abstract
    • Context. The addition of a 28 m Cherenkov telescope (CT5) to the H.E.S.S. array extended the experiment's sensitivity to lower energies. The lowest energy threshold is obtained using monoscopic analysis of data taken with CT5, providing access to gamma-ray energies below 100 GeV for small zenith angle observations. Such an extension of the instrument's energy range is particularly beneficial for studies of active galactic nuclei with soft spectra, as expected for those at a redshift >= 0.5. The high-frequency peaked BL Lac objects PKS 2155-304 (z = 0.116) and PG 1553 + 113 (0.43 < z < 0.58) are among the brightest objects in the gamma-ray sky, both showing clear signatures of gamma-ray absorption at E > 100 GeV interpreted as being due to interactions with the extragalactic background light (EBL). Aims. The aims of this work are twofold: to demonstrate the monoscopic analysis of CT5 data with a low energy threshold, and to obtain accurate measurements of the spectral energy distributions (SED) of PKS 2155-304 and PG 1553 + 113 near their SED peaks at energies approximate to 100 GeV. Methods. Multiple observational campaigns of PKS 2155 304 and PG 1553 + 113 were conducted during 2013 and 2014 using the full H.E.S.S. II instrument (CT1-5). A monoscopic analysis of the data taken with the new CT5 telescope was developed along with an investigation into the systematic uncertainties on the spectral parameters which are derived from this analysis. Results. Using the data from CT5, the energy spectra of PKS 2155 304 and PG 1553 + 113 were reconstructed down to conservative threshold energies of 80 GeV for PKS 2155 304, which transits near zenith, and 110 GeV for the more northern PG 1553 + 113. The measured spectra, well fitted in both cases by a log-parabola spectral model ( with a 5.0 similar to statistical preference for non-zero curvature for PKS 2155 304 and 4.5 sigma for PG 1553+113), were found consistent with spectra derived from contemporaneous Fermi-LAT data, indicating a sharp break in the observed spectra of both sources at E approximate to 100 GeV. When corrected for EBL absorption, the intrinsic H.E.S.S. II mono and Fermi-LAT spectrum of PKS 2155 304 was found to show significant curvature. For PG 1553+113, however, no significant detection of curvature in the intrinsic spectrum could be found within statistical and systematic uncertainties.
  •  
3.
  • Mayer, Manuel, et al. (author)
  • Constraints on particle acceleration in SS433/W50 from MAGIC and HESS observations
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 612
  • Journal article (peer-reviewed)abstract
    • Context. The large jet kinetic power and non-thermal processes occurring in the microquasar SS 433 make this source a good candidate for a very high-energy (VHE) gamma-ray emitter. Gamma-ray fluxes above the sensitivity limits of current Cherenkov telescopes have been predicted for both the central X-ray binary system and the interaction regions of SS 433 jets with the surrounding W50 nebula. Non-thermal emission at lower energies has been previously reported, indicating that efficient particle acceleration is taking place in the system. Aims. We explore the capability of SS 433 to emit VHE gamma rays during periods in which the expected flux attenuation due to periodic eclipses (P-orb similar to 13.1 days) and precession of the circumstellar disk (P-pre similar to 162 days) periodically covering the central binary system is expected to be at its minimum. The eastern and western SS 433/W50 interaction regions are also examined using the whole data set available. We aim to constrain some theoretical models previously developed for this system with our observations. Methods. We made use of dedicated observations from the Major Atmospheric Gamma Imaging Cherenkov telescopes (MAGIC) and High Energy Spectroscopic System (H.E.S.S.) of SS 433 taken from 2006 to 2011. These observation were combined for the first time and accounted for a total effective observation time of 16.5 h, which were scheduled considering the expected phases of minimum absorption of the putative VHE emission. Gamma-ray attenuation does not affect the jet/medium interaction regions. In this case, the analysis of a larger data set amounting to similar to 40-80 h, depending on the region, was employed. Results. No evidence of VHE gamma-ray emission either from the central binary system or from the eastern/western interaction regions was found. Upper limits were computed for the combined data set. Differential fluxes from the central system are found to be less than or similar to 10(-12)-10(-13) TeV-1 cm(-2) s(-1) in an energy interval ranging from similar to few x 100 GeV to similar to few TeV. Integral flux limits down to similar to 10(-12)-10(-13) ph cm(-2) s(-1) and similar to 10(-13)-10(-14) ph cm(-2) s(-1) are obtained at 300 and 800 GeV, respectively. Our results are used to place constraints on the particle acceleration fraction at the inner jet regions and on the physics of the jet/medium interactions. Conclusions. Our findings suggest that the fraction of the jet kinetic power that is transferred to relativistic protons must be relatively small in SS 433, q(p) <= 2.5 x 10(-5), to explain the lack of TeV and neutrino emission from the central system. At the SS 433/W50 interface, the presence of magnetic fields greater than or similar to 10 mu G is derived assuming a synchrotron origin for the observed X-ray emission. This also implies the presence of high-energy electrons with E-e up to 50 TeV, preventing an efficient production of gamma-ray fluxes in these interaction regions.
  •  
4.
  • Petroff, E., et al. (author)
  • A polarized fast radio burst at low Galactic latitude
  • 2017
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford Academic. - 0035-8711 .- 1365-2966. ; 469:4, s. 4465-4482
  • Journal article (peer-reviewed)abstract
    • We report on the discovery of a new fast radio burst (FRB), FRB 150215, with the Parkes radio telescope on 2015 February 15. The burst was detected in real time with a dispersion measure (DM) of 1105.6 +/- 0.8 pc cm(-3), a pulse duration of 2.8(-0.5)(+1.2) ms, and a measured peak flux density assuming that the burst was at beam centre of 0.7(-0.1)(+0.2) Jy. The FRB originated at a Galactic longitude and latitude of 24.66 degrees, 5.28 degrees and 25 degrees away from the Galactic Center. The burst was found to be 43 +/- 5 per cent linearly polarized with a rotation measure (RM) in the range -9 < RM < 12 rad m(-2) (95 per cent confidence level), consistent with zero. The burst was followed up with 11 telescopes to search for radio, optical, X-ray, gamma-ray and neutrino emission. Neither transient nor variable emission was found to be associated with the burst and no repeat pulses have been observed in 17.25 h of observing. The sightline to the burst is close to the Galactic plane and the observed physical properties of FRB 150215 demonstrate the existence of sight lines of anomalously low RM for a given electron column density. The Galactic RM foreground may approach a null value due to magnetic field reversals along the line of sight, a decreased total electron column density from the Milky Way, or some combination of these effects. A lower Galactic DM contribution might explain why this burst was detectable whereas previous searches at low latitude have had lower detection rates than those out of the plane.
  •  
5.
  • Abdalla, H., et al. (author)
  • A very-high-energy component deep in the gamma-ray burst afterglow
  • 2019
  • In: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 575:7783, s. 464-467
  • Journal article (peer-reviewed)abstract
    • Gamma-ray bursts (GRBs) are brief flashes of gamma-rays and are considered to be the most energetic explosive phenomena in the Universe(1). The emission from GRBs comprises a short (typically tens of seconds) and bright prompt emission, followed by a much longer afterglow phase. During the afterglow phase, the shocked outflow-produced by the interaction between the ejected matter and the circumburst medium-slows down, and a gradual decrease in brightness is observed(2). GRBs typically emit most of their energy via.-rays with energies in the kiloelectronvolt-to-megaelectronvolt range, but a few photons with energies of tens of gigaelectronvolts have been detected by space-based instruments(3). However, the origins of such high-energy (above one gigaelectronvolt) photons and the presence of very-high-energy (more than 100 gigaelectronvolts) emission have remained elusive(4). Here we report observations of very-high-energy emission in the bright GRB 180720B deep in the GRB afterglow-ten hours after the end of the prompt emission phase, when the X-ray flux had already decayed by four orders of magnitude. Two possible explanations exist for the observed radiation: inverse Compton emission and synchrotron emission of ultrarelativistic electrons. Our observations show that the energy fluxes in the X-ray and gamma-ray range and their photon indices remain comparable to each other throughout the afterglow. This discovery places distinct constraints on the GRB environment for both emission mechanisms, with the inverse Compton explanation alleviating the particle energy requirements for the emission observed at late times. The late timing of this detection has consequences for the future observations of GRBs at the highest energies.
  •  
6.
  • Abdalla, H., et al. (author)
  • Constraints on the emission region of 3C 279 during strong flares in 2014 and 2015 through VHE gamma-ray observations with HESS
  • 2019
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 627, s. 1-19
  • Journal article (peer-reviewed)abstract
    • The flat spectrum radio quasar 3C 279 is known to exhibit pronounced variability in the high-energy (100MeV < E < 100 GeV) gamma-ray band, which is continuously monitored with Fermi-LAT. During two periods of high activity in April 2014 and June 2015 target-of-opportunity observations were undertaken with the High Energy Stereoscopic System (H.E.S.S.) in the very-high-energy (VHE, E > 100 GeV) gamma-ray domain. While the observation in 2014 provides an upper limit, the observation in 2015 results in a signal with 8 : 7 sigma significance above an energy threshold of 66 GeV. No VHE variability was detected during the 2015 observations. The VHE photon spectrum is soft and described by a power-law index of 4.2 +/- 0.3. The H.E.S.S. data along with a detailed and contemporaneous multiwavelength data set provide constraints on the physical parameters of the emission region. The minimum distance of the emission region from the central black hole was estimated using two plausible geometries of the broad-line region and three potential intrinsic spectra. The emission region is confidently placed at r greater than or similar to 1 : 7 X 1017 cm from the black hole, that is beyond the assumed distance of the broad-line region. Time-dependent leptonic and lepto-hadronic one-zone models were used to describe the evolution of the 2015 flare. Neither model can fully reproduce the observations, despite testing various parameter sets. Furthermore, the H.E.S.S. data were used to derive constraints on Lorentz invariance violation given the large redshift of 3C 279.
  •  
7.
  • Abdalla, H., et al. (author)
  • Detection of very-high-energy gamma-ray emission from the colliding wind binary eta Car with HESS
  • 2020
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 635, s. 1-8
  • Journal article (peer-reviewed)abstract
    • Aims. Colliding wind binary systems have long been suspected to be high-energy (HE; 100 MeV < E < 100 GeV) gamma-ray emitters. eta Car is the most prominent member of this object class and is confirmed to emit phase-locked HE gamma rays from hundreds of MeV to 100 GeV energies. This work aims to search for and characterise the very-high-energy (VHE; E >100 GeV) gamma-ray emission from eta Car around the last periastron passage in 2014 with the ground-based High Energy Stereoscopic System (H.E.S.S.).Methods. The region around eta Car was observed with H.E.S.S. between orbital phase p = 0.78-1.10, with a closer sampling at p approximate to 0.95 and p approximate to 1.10 (assuming a period of 2023 days). Optimised hardware settings as well as adjustments to the data reduction, reconstruction, and signal selection were needed to suppress and take into account the strong, extended, and inhomogeneous night sky background (NSB) in the eta Car field of view. Tailored run-wise Monte-Carlo simulations (RWS) were required to accurately treat the additional noise from NSB photons in the instrument response functions.Results. H.E.S.S. detected VHE gamma-ray emission from the direction of eta Car shortly before and after the minimum in the X-ray light-curve close to periastron. Using the point spread function provided by RWS, the reconstructed signal is point-like and the spectrum is best described by a power law. The overall flux and spectral index in VHE gamma rays agree within statistical and systematic errors before and after periastron. The gamma-ray spectrum extends up to at least 400 GeV. This implies a maximum magnetic field in a leptonic scenario in the emission region of 0.5 Gauss. No indication for phase-locked flux variations is detected in the H.E.S.S. data.
  •  
8.
  • Abdalla, H., et al. (author)
  • First limits on the very-high energy gamma-ray afterglow emission of a fast radio burst HESS observations of FRB 150418
  • 2017
  • In: Astronomy and Astrophysics. - : The European Southern Observatory (ESO). - 0004-6361 .- 1432-0746. ; 597
  • Journal article (peer-reviewed)abstract
    • Aims. Following the detection of the fast radio burst FRB150418 by the SUPERB project at the Parkes radio telescope, we aim to search for very-high energy gamma-ray afterglow emission. Methods. Follow-up observations in the very-high energy gamma-ray domain were obtained with the H.E.S.S. imaging atmospheric Cherenkov telescope system within 14.5 h of the radio burst. Results. The obtained 1.4 h of gamma-ray observations are presented and discussed. At the 99% C.L. we obtained an integral upper limit on the gamma-ray flux of Phi(gamma)(E > 350 GeV) < 1.33 x 10(-8) m(-2) s(-1). Differential flux upper limits as function of the photon energy were derived and used to constrain the intrinsic high-energy afterglow emission of FRB 150418. Conclusions. No hints for high-energy afterglow emission of FRB 150418 were found. Taking absorption on the extragalactic background light into account and assuming a distance of z = 0 : 492 based on radio and optical counterpart studies and consistent with the FRB dispersion, we constrain the gamma-ray luminosity at 1 TeV to L < 5 : 1 x 10(47) erg/s at 99% C.L.
  •  
9.
  • Abdalla, H., et al. (author)
  • HESS and Fermi-LAT observations of PSR B1259-63/LS 2883 during its 2014 and 2017 periastron passages
  • 2020
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 633, s. 1-14
  • Journal article (peer-reviewed)abstract
    • Context. PSR B1259-63/LS 2883 is a gamma-ray binary system consisting of a pulsar in an eccentric orbit around a bright Oe stellar-type companion star that features a dense circumstellar disc. The bright broad-band emission observed at phases close to periastron offers a unique opportunity to study particle acceleration and radiation processes in binary systems. Observations at gamma-ray energies constrain these processes through variability and spectral characterisation studies. Aims. The high- and very-high-energy (HE, VHE) gamma-ray emission from PSR B1259-63/LS 2883 around the times of its periastron passage are characterised, in particular, at the time of the HE gamma-ray flares reported to have occurred in 2011, 2014, and 2017. Short-term and average emission characteristics of PSR B1259-63/LS 2883 are determined. Super-orbital variability is searched for in order to investigate possible cycle-to-cycle VHE flux changes due to different properties of the companion star's circumstellar disc and/or the conditions under which the HE gamma-ray flares develop. Methods. Spectra and light curves were derived from observations conducted with the H.E.S.S-II array in 2014 and 2017. Phase-folded light curves are compared with the results obtained in 2004, 2007, and 2011. Fermi-LAT observations from 2010/11, 2014, and 2017 are analysed. Results. A local double-peak profile with asymmetric peaks in the VHE light curve is measured, with a flux minimum at the time of periastron t(p) and two peaks coinciding with the times at which the neutron star crosses the companion's circumstellar disc (similar to t(p) 16 d). A high VHE gamma-ray flux is also observed at the times of the HE gamma-ray flares (similar to t(p) + 30 d) and at phases before the first disc crossing (similar to t(p) - 35 d). The spectral energy range now extends to below 200 GeV and up to similar to 45 TeV. Conclusions. PSR B1259-63/LS 2883 displays periodic flux variability at VHE gamma-rays without clear signatures of super-orbital modulation in the time span covered by the monitoring of the source with the H.E.S.S. telescopes. This flux variability is most probably caused by the changing environmental conditions, particularly at times close to periastron passage at which the neutron star is thought to cross the circumstellar disc of the companion star twice. In contrast, the photon index remains unchanged within uncertainties for about 200 d around periastron. At HE gamma-rays, PSR B1259-63/LS 2883 has now been detected also before and after periastron, close to the disc crossing times. Repetitive flares with distinct variability patterns are detected in this energy range. Such outbursts are not observed at VHEs, although a relatively high emission level is measured. The spectra obtained in both energy regimes displays a similar slope, although a common physical origin either in terms of a related particle population, emission mechanism, or emitter location is ruled out.
  •  
10.
  • Abdalla, H., et al. (author)
  • HESS and Suzaku observations of the Vela X pulsar wind nebula
  • 2019
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 627, s. 1-16
  • Journal article (peer-reviewed)abstract
    • Context. Pulsar wind nebulae (PWNe) represent the most prominent population of Galactic very-high-energy gamma-ray sources and are thought to be an efficient source of leptonic cosmic rays. Vela X is a nearby middle-aged PWN, which shows bright X-ray and TeV gamma-ray emission towards an elongated structure called the cocoon. Aims. Since TeV emission is likely inverse-Compton emission of electrons, predominantly from interactions with the cosmic microwave background, while X-ray emission is synchrotron radiation of the same electrons, we aim to derive the properties of the relativistic particles and of magnetic fields with minimal modelling. Methods. We used data from the Suzaku XIS to derive the spectra from three compact regions in Vela X covering distances from 0.3 to 4 pc from the pulsar along the cocoon. We obtained gamma-ray spectra of the same regions from H.E.S.S. observations and fitted a radiative model to the multi-wavelength spectra. Results. The TeV electron spectra and magnetic field strengths are consistent within the uncertainties for the three regions, with energy densities of the order 10(-12) erg cm(-3). The data indicate the presence of a cutoff in the electron spectrum at energies of similar to 100 TeV and a magnetic field strength of similar to 6 mu G. Constraints on the presence of turbulent magnetic fields are weak. Conclusions. The pressure of TeV electrons and magnetic fields in the cocoon is dynamically negligible, requiring the presence of another dominant pressure component to balance the pulsar wind at the termination shock. Sub-TeV electrons cannot completely account for the missing pressure, which may be provided either by relativistic ions or from mixing of the ejecta with the pulsar wind. The electron spectra are consistent with expectations from transport scenarios dominated either by advection via the reverse shock or by diffusion, but for the latter the role of radiative losses near the termination shock needs to be further investigated in the light of the measured cutoff energies. Constraints on turbulent magnetic fields and the shape of the electron cutoff can be improved by spectral measurements in the energy range greater than or similar to 10 keV.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 44

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view