SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Klarlund Pedersen Bente) "

Sökning: WFRF:(Klarlund Pedersen Bente)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Nilsson, E., et al. (författare)
  • Altered DNA Methylation and Differential Expression of Genes Influencing Metabolism and Inflammation in Adipose Tissue From Subjects With Type 2 Diabetes
  • 2014
  • Ingår i: Diabetes. - : American Diabetes Association Inc.. - 0012-1797 .- 1939-327X. ; 63:9, s. 2962-2976
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetics, epigenetics, and environment may together affect the susceptibility for type 2 diabetes (T2D). Our aim was to dissect molecular mechanisms underlying T2D using genome-wide expression and DNA methylation data in adipose tissue from monozygotic twin pairs discordant for T2D and independent case-control cohorts. In adipose tissue from diabetic twins, we found decreased expression of genes involved in oxidative phosphorylation; carbohydrate, amino acid, and lipid metabolism; and increased expression of genes involved in inflammation and glycan degradation. The most differentially expressed genes included ELOVL6, GYS2, FADS1, SPP1 (OPN), CCL18, and IL1RN. We replicated these results in adipose tissue from an independent case-control cohort. Several candidate genes for obesity and T2D (e.g., IRS1 and VEGFA) were differentially expressed in discordant twins. We found a heritable contribution to the genome-wide DNA methylation variability in twins. Differences in methylation between monozygotic twin pairs discordant for T2D were subsequently modest. However, 15,627 sites, representing 7,046 genes including PPARG, KCNQ1, TCF7L2, and IRS1, showed differential DNA methylation in adipose tissue from unrelated subjects with T2D compared with control subjects. A total of 1,410 of these sites also showed differential DNA methylation in the twins discordant for T2D. For the differentially methylated sites, the heritability estimate was 0.28. We also identified copy number variants (CNVs) in monozygotic twin pairs discordant for T2D. Taken together, subjects with T2D exhibit multiple transcriptional and epigenetic changes in adipose tissue relevant to the development of the disease.
  •  
2.
  • Wigge, Leif, 1986, et al. (författare)
  • Type 2 diabetes and obesity induce similar transcriptional reprogramming in human myocytes
  • 2017
  • Ingår i: Genome Medicine. - : BIOMED CENTRAL LTD. - 1756-994X. ; 9:1, s. Article Number: 47-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Skeletal muscle is one of the primary tissues involved in the development of type 2 diabetes (T2D). The close association between obesity and T2D makes it difficult to isolate specific effects attributed to the disease alone. Therefore, here we set out to identify and characterize intrinsic properties of myocytes, associated independently with T2D or obesity. Methods: We generated and analyzed RNA-seq data from primary differentiated myotubes from 24 human subjects, using a factorial design (healthy/T2D and non-obese/obese), to determine the influence of each specific factor on genome-wide transcription. This setup enabled us to identify intrinsic properties, originating from muscle precursor cells and retained in the corresponding myocytes. Bioinformatic and statistical methods, including differential expression analysis, gene-set analysis, and metabolic network analysis, were used to characterize the different myocytes. Results: We found that the transcriptional program associated with obesity alone was strikingly similar to that induced specifically by T2D. We identified a candidate epigenetic mechanism, H3K27me3 histone methylation, mediating these transcriptional signatures. T2D and obesity were independently associated with dysregulated myogenesis, down-regulated muscle function, and up-regulation of inflammation and extracellular matrix components. Metabolic network analysis identified that in T2D but not obesity a specific metabolite subnetwork involved in sphingolipid metabolism was transcriptionally regulated. Conclusions: Our findings identify inherent characteristics in myocytes, as a memory of the in vivo phenotype, without the influence from a diabetic or obese extracellular environment, highlighting their importance in the development of T2D.
  •  
3.
  • Davegårdh, Cajsa, et al. (författare)
  • Abnormal epigenetic changes during differentiation of human skeletal muscle stem cells from obese subjects
  • Ingår i: BMC Medicine. - : BioMed Central (BMC). - 1741-7015. ; 15:1, s. 1-27
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Human skeletal muscle stem cells are important for muscle regeneration. However, the combined genome-wide DNA methylation and expression changes taking place during adult myogenesis have not been described in detail and novel myogenic factors may be discovered. Additionally, obesity is associated with low relative muscle mass and diminished metabolism. Epigenetic alterations taking place during myogenesis might contribute to these defects. Methods: We used Infinium HumanMethylation450 BeadChip Kit (Illumina) and HumanHT-12 Expression BeadChip (Illumina) to analyze genome-wide DNA methylation and transcription before versus after differentiation of primary human myoblasts from 14 non-obese and 14 obese individuals. Functional follow-up experiments were performed using siRNA mediated gene silencing in primary human myoblasts and a transgenic mouse model. Results: We observed genome-wide changes in DNA methylation and expression patterns during differentiation of primary human muscle stem cells (myoblasts). We identified epigenetic and transcriptional changes of myogenic transcription factors (MYOD1, MYOG, MYF5, MYF6, PAX7, MEF2A, MEF2C, and MEF2D), cell cycle regulators, metabolic enzymes and genes previously not linked to myogenesis, including IL32, metallothioneins, and pregnancy-specific beta-1-glycoproteins. Functional studies demonstrated IL-32 as a novel target that regulates human myogenesis, insulin sensitivity and ATP levels in muscle cells. Furthermore, IL32 transgenic mice had reduced insulin response and muscle weight. Remarkably, approximately 3.7 times more methylation changes (147,161 versus 39,572) were observed during differentiation of myoblasts from obese versus non-obese subjects. In accordance, DNMT1 expression increased during myogenesis only in obese subjects. Interestingly, numerous genes implicated in metabolic diseases and epigenetic regulation showed differential methylation and expression during differentiation only in obese subjects. Conclusions: Our study identifies IL-32 as a novel myogenic regulator, provides a comprehensive map of the dynamic epigenome during differentiation of human muscle stem cells and reveals abnormal epigenetic changes in obesity.
  •  
4.
  • Davegårdh, Cajsa, et al. (författare)
  • Sex influences DNA methylation and gene expression in human skeletal muscle myoblasts and myotubes
  • Ingår i: Stem Cell Research and Therapy. - : BioMed Central (BMC). - 1757-6512. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Sex differences are known to impact muscle phenotypes, metabolism, and disease risk. Skeletal muscle stem cells (satellite cells) are important for muscle repair and to maintain functional skeletal muscle. Here we studied, for the first time, effects of sex on DNA methylation and gene expression in primary human myoblasts (activated satellite cells) before and after differentiation into myotubes. Method: We used an array-based approach to analyse genome-wide DNA methylation and gene expression in myoblasts and myotubes from 13 women and 13 men. The results were followed up with a reporter gene assay. Results: Genome-wide DNA methylation and gene expression differences between the sexes were detected in both myoblasts and myotubes, on the autosomes as well as the X-chromosome, despite lack of exposure to sex hormones and other factors that differ between sexes. Pathway analysis revealed higher expression of oxidative phosphorylation and other metabolic pathways in myoblasts from women compared to men. Oxidative phosphorylation was also enriched among genes with higher expression in myotubes from women. Forty genes in myoblasts and 9 in myotubes had differences in both DNA methylation and gene expression between the sexes, including LAMP2 and SIRT1 in myoblasts and KDM6A in myotubes. Furthermore, increased DNA methylation of LAMP2 promoter had negative effects on reporter gene expression. Five genes (CREB5, RPS4X, SYAP1, XIST, and ZRSR2) showed differential DNA methylation and gene expression between the sexes in both myoblasts and myotubes. Interestingly, differences in DNA methylation and expression between women and men were also found during differentiation (myoblasts versus myotubes), e.g., in genes involved in energy metabolism. Interestingly, more DNA methylation changes occur in women compared to men on autosomes. Conclusion: All together, we show that epigenetic and transcriptional differences exist in human myoblasts and myotubes as well as during differentiation between women and men. We believe that these intrinsic differences might contribute to sex dependent differences in muscular phenotypes.
  •  
5.
  • Väremo, Leif, et al. (författare)
  • Proteome- and Transcriptome-Driven Reconstruction of the Human Myocyte Metabolic Network and Its Use for Identification of Markers for Diabetes
  • 2015
  • Ingår i: Cell reports. - 2211-1247 .- 2211-1247. ; 11:6, s. 921-933
  • Tidskriftsartikel (refereegranskat)abstract
    • Skeletal myocytes are metabolically active and susceptible to insulin resistance and are thus implicated in type 2 diabetes (T2D). This complex disease involves systemic metabolic changes, and their elucidation at the systems level requires genome-wide data and biological networks. Genome-scale metabolic models (GEMs) provide a network context for the integration of high-throughput data. We generated myocyte-specific RNA-sequencing data and investigated their correlation with proteome data. These data were then used to reconstruct a comprehensive myocyte GEM. Next, we performed a meta-analysis of six studies comparing muscle transcription in T2D versus healthy subjects. Transcriptional changes were mapped on the myocyte GEM, revealing extensive transcriptional regulation in T2D, particularly around pyruvate oxidation, branched-chain amino acid catabolism, and tetrahydrofolate metabolism, connected through the downregulated dihydrolipoamide dehydrogenase. Strikingly, the gene signature underlying this metabolic regulation successfully classifies the disease state of individual samples, suggesting that regulation of these pathways is a ubiquitous feature of myocytes in response to T2D.
  •  
6.
  • Broholm, Christa, et al. (författare)
  • Epigenome- and Transcriptome-wide Changes in Muscle Stem Cells from Low Birth Weight Men
  • 2020
  • Ingår i: Endocrine Research. - : Taylor & Francis. - 0743-5800. ; 45:1, s. 58-71
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Being born with low birth weight (LBW) is a risk factor for muscle insulin resistance and type 2 diabetes (T2D), which may be mediated by epigenetic mechanisms programmed by the intrauterine environment. Epigenetic mechanisms exert their prime effects in developing cells. We hypothesized that muscle insulin resistance in LBW subjects may be due to early differential epigenomic and transcriptomic alterations in their immature muscle progenitor cells. Results: Muscle progenitor cells were obtained from 23 healthy young adult men born at term with LBW, and 15 BMI-matched normal birth weight (NBW) controls. The cells were subsequently cultured and differentiated into myotubes. DNA and RNA were harvested before and after differentiation for genome-wide DNA methylation and RNA expression measurements. After correcting for multiple comparisons (q ≤ 0.05), 56 CpG sites were found to be significantly, differentially methylated in myoblasts from LBW compared with NBW men, of which the top five gene-annotated CpG sites (SKI, ARMCX3, NR5A2, NEUROG, ESRRG) previously have been associated to regulation of cholesterol, fatty acid and glucose metabolism and muscle development or hypertrophy. LBW men displayed markedly decreased myotube gene expression levels of the AMPK-repressing tyrosine kinase gene FYN and the histone deacetylase gene HDAC7. Silencing of FYN and HDAC7 was associated with impaired myotube formation, which for HDAC7 reduced muscle glucose uptake. Conclusions: The data provides evidence of impaired muscle development predisposing LBW individuals to T2D is linked to and potentially caused by distinct DNA methylation and transcriptional changes including down regulation of HDAC7 and FYN in their immature myoblast stem cells.
  •  
7.
  • Hansen, Ninna Schiøler, et al. (författare)
  • Fetal hyperglycemia changes human preadipocyte function in adult life
  • Ingår i: Journal of Clinical Endocrinology and Metabolism. - : Oxford University Press. - 0021-972X. ; 102:4, s. 1141-1150
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: Offspring of women with gestational diabetes (O-GDM) or type 1 diabetes mellitus (O-T1DM) have been exposed to hyperglycemia in utero and have an increased risk of developing metabolic disease in adulthood. Design: In total, we recruited 206 adult offspring comprising the two fetal hyperglycemic groups, O-GDM and O-T1DM, and, as a control group, offspring from the background population (O-BP). Subcutaneous fat biopsies were obtained and preadipocyte cell cultures were established from adult male O-GDM (n = 18, age 30.1 ± 2.5 years), O-T1DM (n = 18, age 31.6 ± 2.2 years), and O-BP (n = 16; age, 31.5 ± 2.7 years) and cultured in vitro. Main Outcome Measures: First, we studied in vivo adipocyte histology. Second, we studied in vitro preadipocyte leptin secretion, gene expression, and LEP DNA methylation. This was studied in combination with in vitro preadipocyte lipogenesis, lipolysis, and mitochondrial respiration. Results: We show that subcutaneous adipocytes from O-GDM are enlarged compared with O-BP adipocytes. Preadipocytes isolated from male O-GDM and O-T1DM and cultured in vitro displayed decreased LEP promoter methylation, increased leptin gene expression, and elevated leptin secretion throughout differentiation, compared with adipocytes established from male O-BP. In addition, the preadipocytes demonstrated functional defects including decreased maximal mitochondrial capacity with increased lipolysis and decreased ability to store fatty acids when challenged with 3 days of extra fatty acid supply. Conclusions: Taken together, these findings show that intrinsic epigenetic and functional changes exist in preadipocyte cultures from individuals exposed to fetal hyperglycemia who are at increased risk of developing metabolic disease.
  •  
8.
  •  
9.
  • Schauer, Tim, et al. (författare)
  • Exercise intensity and markers of inflammation during and after (neo-) adjuvant cancer treatment.
  • 2021
  • Ingår i: Endocrine-Related Cancer. - 1351-0088 .- 1479-6821.
  • Tidskriftsartikel (refereegranskat)abstract
    • Exercise training has been hypothesized to lower the inflammatory burden for patients with cancer, but the role of exercise intensity is unknown. To this end, we compared the effects of high-intensity (HI) and low-to-moderate intensity (LMI) exercise on markers of inflammation in patients with curable breast, prostate and colorectal cancer undergoing primary adjuvant cancer treatment in a secondary analysis of the Phys-Can randomized trial (NCT02473003). Sub-group analyses focused on patients with breast cancer undergoing chemotherapy. Patients performed six months of combined aerobic and resistance exercise on either HI or LMI during and after primary adjuvant cancer treatment. Plasma taken at baseline, immediately post-treatment and post-intervention was analyzed for levels of interleukin (IL)-1β, IL-6, IL-8, IL-10, tumor necrosis factor (TNF)-α and C-reactive protein (CRP). Intention-to-treat analyses of 394 participants revealed no significant between-group differences. Regardless of exercise intensity, significant increases of IL-6, IL-8, IL-10 and TNF-α post-treatment followed by significant declines, except for IL-8, until post-intervention were observed with no difference for CRP or IL-1β. Subgroup analyses of 154 patients with breast cancer undergoing chemotherapy revealed that CRP (Estimated Mean Difference (95% CI): 0.59 (0.33; 1.06); p = 0.101) and TNF-α (EMD (95% CI): 0.88 (0.77; 1) ; p = 0.053) increased less with HI exercise post-treatment compared to LMI. Exploratory cytokine co-regulation analysis revealed no difference between the groups. In patients with breast cancer undergoing chemotherapy, HI exercise resulted in a lesser increase of CRP and TNF-α immediately post-treatment compared to LMI, potentially protecting against chemotherapy related inflammation.
  •  
10.
  • Zenius Jespersen, Naja, et al. (författare)
  • A classical brown adipose tissue mRNA signature partly overlaps with brite in the supraclavicular region of adult humans
  • 2013
  • Ingår i: Cell Metabolism. - 1550-4131 .- 1932-7420. ; 17:5, s. 798-805
  • Tidskriftsartikel (refereegranskat)abstract
    • Human brown adipose tissue (BAT) has been detected in adults but was recently suggested to be of brite/beige origin. We collected BAT from the supraclavicular region in 21 patients undergoing surgery for suspected cancer in the neck area and assessed the gene expression of established murine markers for brown, brite/beige, and white adipocytes. We demonstrate that a classical brown expression signature, including upregulation of miR-206, miR-133b, LHX8, and ZIC1 and downregulation of HOXC8 and HOXC9, coexists with an upregulation of two newly established brite/beige markers, TBX1 and TMEM26. A similar mRNA expression profile was observed when comparing isolated human adipocytes from BAT and white adipose tissue (WAT) depots, differentiated in vitro. In conclusion, our data suggest that human BAT might consist of both classical brown and recruitable brite adipocytes, an observation important for future considerations on how to induce human BAT.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy