SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kleinman Aaron) "

Sökning: WFRF:(Kleinman Aaron)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lee, James J, et al. (författare)
  • Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals.
  • 2018
  • Ingår i: Nature genetics. - 1546-1718 .- 1061-4036. ; 50:8, s. 1112-1121
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we conducted a large-scale genetic association analysis of educational attainment in a sample of approximately 1.1 million individuals and identify 1,271 independent genome-wide-significant SNPs. For the SNPs taken together, we found evidence of heterogeneous effects across environments. The SNPs implicate genes involved in brain-development processes and neuron-to-neuron communication. In a separate analysis of the X chromosome, we identify 10 independent genome-wide-significant SNPs and estimate a SNP heritability of around 0.3% in both men and women, consistent with partial dosage compensation. A joint (multi-phenotype) analysis of educational attainment and three related cognitive phenotypes generates polygenic scores that explain 11-13% of the variance in educational attainment and 7-10% of the variance in cognitive performance. This prediction accuracy substantially increases the utility of polygenic scores as tools in research.
  •  
2.
  •  
3.
  • Dudding, Tom, et al. (författare)
  • Genome wide analysis for mouth ulcers identifies associations at immune regulatory loci
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Mouth ulcers are the most common ulcerative condition and encompass several clinical diagnoses, including recurrent aphthous stomatitis (RAS). Despite previous evidence for heritability, it is not clear which specific genetic loci are implicated in RAS. In this genome-wide association study (n = 461,106) heritability is estimated at 8.2% (95% CI: 6.4%, 9.9%). This study finds 97 variants which alter the odds of developing non-specific mouth ulcers and replicate these in an independent cohort (n = 355,744) (lead variant after meta-analysis: rs76830965, near IL12A, OR 0.72 (95% CI: 0.71, 0.73); P = 4.4e−483). Additional effect estimates from three independent cohorts with more specific phenotyping and specific study characteristics support many of these findings. In silico functional analyses provide evidence for a role of T cell regulation in the aetiology of mouth ulcers. These results provide novel insight into the pathogenesis of a common, important condition.
  •  
4.
  • Morris, John A, et al. (författare)
  • An atlas of genetic influences on osteoporosis in humans and mice.
  • 2019
  • Ingår i: Nature genetics. - 1546-1718. ; 51, s. 258-266
  • Tidskriftsartikel (refereegranskat)abstract
    • Osteoporosis is a common aging-related disease diagnosed primarily using bone mineral density (BMD). We assessed genetic determinants of BMD as estimated by heel quantitative ultrasound in 426,824 individuals, identifying 518 genome-wide significant loci (301 novel), explaining 20% of its variance. We identified 13 bone fracture loci, all associated with estimated BMD (eBMD), in ~1.2 million individuals. We then identified target genes enriched for genes known to influence bone density and strength (maximum odds ratio (OR) = 58, P = 1 × 10-75) from cell-specific features, including chromatin conformation and accessible chromatin sites. We next performed rapid-throughput skeletal phenotyping of 126 knockout mice with disruptions in predicted target genes and found an increased abnormal skeletal phenotype frequency compared to 526 unselected lines (P < 0.0001). In-depth analysis of one gene, DAAM2, showed a disproportionate decrease in bone strength relative to mineralization. This genetic atlas provides evidence linking associated SNPs to causal genes, offers new insight into osteoporosis pathophysiology, and highlights opportunities for drug development.
  •  
5.
  • Zheng, Hou-Feng, et al. (författare)
  • Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture.
  • 2015
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 526:7571, s. 112-117
  • Tidskriftsartikel (refereegranskat)abstract
    • The extent to which low-frequency (minor allele frequency (MAF) between 1-5%) and rare (MAF ≤ 1%) variants contribute to complex traits and disease in the general population is mainly unknown. Bone mineral density (BMD) is highly heritable, a major predictor of osteoporotic fractures, and has been previously associated with common genetic variants, as well as rare, population-specific, coding variants. Here we identify novel non-coding genetic variants with large effects on BMD (ntotal = 53,236) and fracture (ntotal = 508,253) in individuals of European ancestry from the general population. Associations for BMD were derived from whole-genome sequencing (n = 2,882 from UK10K (ref. 10); a population-based genome sequencing consortium), whole-exome sequencing (n = 3,549), deep imputation of genotyped samples using a combined UK10K/1000 Genomes reference panel (n = 26,534), and de novo replication genotyping (n = 20,271). We identified a low-frequency non-coding variant near a novel locus, EN1, with an effect size fourfold larger than the mean of previously reported common variants for lumbar spine BMD (rs11692564(T), MAF = 1.6%, replication effect size = +0.20 s.d., Pmeta = 2 × 10(-14)), which was also associated with a decreased risk of fracture (odds ratio = 0.85; P = 2 × 10(-11); ncases = 98,742 and ncontrols = 409,511). Using an En1(cre/flox) mouse model, we observed that conditional loss of En1 results in low bone mass, probably as a consequence of high bone turnover. We also identified a novel low-frequency non-coding variant with large effects on BMD near WNT16 (rs148771817(T), MAF = 1.2%, replication effect size = +0.41 s.d., Pmeta = 1 × 10(-11)). In general, there was an excess of association signals arising from deleterious coding and conserved non-coding variants. These findings provide evidence that low-frequency non-coding variants have large effects on BMD and fracture, thereby providing rationale for whole-genome sequencing and improved imputation reference panels to study the genetic architecture of complex traits and disease in the general population.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy