SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kochunov Peter) "

Sökning: WFRF:(Kochunov Peter)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hibar, Derrek P., et al. (författare)
  • Novel genetic loci associated with hippocampal volume
  • 2017
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (r(g) = -0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.
  •  
2.
  • Thompson, Paul M., et al. (författare)
  • The ENIGMA Consortium : large-scale collaborative analyses of neuroimaging and genetic data
  • 2014
  • Ingår i: BRAIN IMAGING BEHAV. - : Springer Science and Business Media LLC. - 1931-7557 .- 1931-7565. ; 8:2, s. 153-182
  • Tidskriftsartikel (refereegranskat)abstract
    • The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience, genetics, and medicine, ENIGMA studies have analyzed neuroimaging data from over 12,826 subjects. In addition, data from 12,171 individuals were provided by the CHARGE consortium for replication of findings, in a total of 24,997 subjects. By meta-analyzing results from many sites, ENIGMA has detected factors that affect the brain that no individual site could detect on its own, and that require larger numbers of subjects than any individual neuroimaging study has currently collected. ENIGMA's first project was a genome-wide association study identifying common variants in the genome associated with hippocampal volume or intracranial volume. Continuing work is exploring genetic associations with subcortical volumes (ENIGMA2) and white matter microstructure (ENIGMA-DTI). Working groups also focus on understanding how schizophrenia, bipolar illness, major depression and attention deficit/hyperactivity disorder (ADHD) affect the brain. We review the current progress of the ENIGMA Consortium, along with challenges and unexpected discoveries made on the way.
  •  
3.
  • Barth, Claudia, et al. (författare)
  • In vivo white matter microstructure in adolescents with early-onset psychosis : a multi-site mega-analysis
  • 2023
  • Ingår i: Molecular Psychiatry. - : Springer Nature. - 1359-4184 .- 1476-5578. ; 28, s. 1159-1169
  • Tidskriftsartikel (refereegranskat)abstract
    • Emerging evidence suggests brain white matter alterations in adolescents with early-onset psychosis (EOP; age of onset <18 years). However, as neuroimaging methods vary and sample sizes are modest, results remain inconclusive. Using harmonized data processing protocols and a mega-analytic approach, we compared white matter microstructure in EOP and healthy controls using diffusion tensor imaging (DTI). Our sample included 321 adolescents with EOP (median age=16.6 years, interquartile range (IQR)=2.14, 46.4% females) and 265 adolescent healthy controls (median age=16.2 years, IQR=2.43, 57.7% females) pooled from nine sites. All sites extracted mean fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) for 25 white matter regions of interest per participant. ComBat harmonization was performed for all DTI measures to adjust for scanner differences. Multiple linear regression models were fitted to investigate case-control differences and associations with clinical variables in regional DTI measures. We found widespread lower FA in EOP compared to healthy controls, with the largest effect sizes in the superior longitudinal fasciculus (Cohen's d=0.37), posterior corona radiata (d=0.32), and superior fronto-occipital fasciculus (d=0.31). We also found widespread higher RD and more localized higher MD and AD. We detected significant effects of diagnostic subgroup, sex, and duration of illness, but not medication status. Using the largest EOP DTI sample to date, our findings suggest a profile of widespread white matter microstructure alterations in adolescents with EOP, most prominently in male individuals with early-onset schizophrenia and individuals with a shorter duration of illness.
  •  
4.
  • Gurholt, Tiril P., et al. (författare)
  • Intracranial and subcortical volumes in adolescents with early‐onset psychosis : A multisite mega‐analysis from the ENIGMA consortium
  • 2020
  • Ingår i: Human Brain Mapping. - Stockholm : Wiley. - 1065-9471 .- 1097-0193. ; 43:1, s. 373-384
  • Tidskriftsartikel (refereegranskat)abstract
    • Early-onset psychosis disorders are serious mental disorders arising before the age of 18 years. Here, we investigate the largest neuroimaging dataset, to date, of patients with early-onset psychosis and healthy controls for differences in intracranial and subcortical brain volumes. The sample included 263 patients with early-onset psychosis (mean age: 16.4 ± 1.4 years, mean illness duration: 1.5 ± 1.4 years, 39.2% female) and 359 healthy controls (mean age: 15.9 ± 1.7 years, 45.4% female) with magnetic resonance imaging data, pooled from 11 clinical cohorts. Patients were diagnosed with early-onset schizophrenia (n = 183), affective psychosis (n = 39), or other psychotic disorders (n = 41). We used linear mixed-effects models to investigate differences in intracranial and subcortical volumes across the patient sample, diagnostic subgroup and antipsychotic medication, relative to controls. We observed significantly lower intracranial (Cohen's d = −0.39) and hippocampal (d = −0.25) volumes, and higher caudate (d = 0.25) and pallidum (d = 0.24) volumes in patients relative to controls. Intracranial volume was lower in both early-onset schizophrenia (d = −0.34) and affective psychosis (d = −0.42), and early-onset schizophrenia showed lower hippocampal (d = −0.24) and higher pallidum (d = 0.29) volumes. Patients who were currently treated with antipsychotic medication (n = 193) had significantly lower intracranial volume (d = −0.42). The findings demonstrate a similar pattern of brain alterations in early-onset psychosis as previously reported in adult psychosis, but with notably low intracranial volume. The low intracranial volume suggests disrupted neurodevelopment in adolescent early-onset psychosis.
  •  
5.
  • Gutman, Boris A, et al. (författare)
  • A meta-analysis of deep brain structural shape and asymmetry abnormalities in 2,833 individuals with schizophrenia compared with 3,929 healthy volunteers via the ENIGMA Consortium
  • 2022
  • Ingår i: Human Brain Mapping. - : John Wiley & Sons. - 1065-9471 .- 1097-0193. ; 43:1, s. 352-372
  • Tidskriftsartikel (refereegranskat)abstract
    • Schizophrenia is associated with widespread alterations in subcortical brain structure. While analytic methods have enabled more detailed morphometric characterization, findings are often equivocal. In this meta-analysis, we employed the harmonized ENIGMA shape analysis protocols to collaboratively investigate subcortical brain structure shape differences between individuals with schizophrenia and healthy control participants. The study analyzed data from 2,833 individuals with schizophrenia and 3,929 healthy control participants contributed by 21 worldwide research groups participating in the ENIGMA Schizophrenia Working Group. Harmonized shape analysis protocols were applied to each site's data independently for bilateral hippocampus, amygdala, caudate, accumbens, putamen, pallidum, and thalamus obtained from T1-weighted structural MRI scans. Mass univariate meta-analyses revealed more-concave-than-convex shape differences in the hippocampus, amygdala, accumbens, and thalamus in individuals with schizophrenia compared with control participants, more-convex-than-concave shape differences in the putamen and pallidum, and both concave and convex shape differences in the caudate. Patterns of exaggerated asymmetry were observed across the hippocampus, amygdala, and thalamus in individuals with schizophrenia compared to control participants, while diminished asymmetry encompassed ventral striatum and ventral and dorsal thalamus. Our analyses also revealed that higher chlorpromazine dose equivalents and increased positive symptom levels were associated with patterns of contiguous convex shape differences across multiple subcortical structures. Findings from our shape meta-analysis suggest that common neurobiological mechanisms may contribute to gray matter reduction across multiple subcortical regions, thus enhancing our understanding of the nature of network disorganization in schizophrenia.
  •  
6.
  • Petrov, Dmitry, et al. (författare)
  • Machine Learning for Large-Scale Quality Control of 3D Shape Models in Neuroimaging
  • 2017
  • Ingår i: Machine learning in medical imaging. MLMI (Workshop). - Cham : Springer International Publishing. ; 10541, s. 371-378
  • Tidskriftsartikel (refereegranskat)abstract
    • As very large studies of complex neuroimaging phenotypes become more common, human quality assessment of MRI-derived data remains one of the last major bottlenecks. Few attempts have so far been made to address this issue with machine learning. In this work, we optimize predictive models of quality for meshes representing deep brain structure shapes. We use standard vertex-wise and global shape features computed homologously across 19 cohorts and over 7500 human-rated subjects, training kernelized Support Vector Machine and Gradient Boosted Decision Trees classifiers to detect meshes of failing quality. Our models generalize across datasets and diseases, reducing human workload by 30-70%, or equivalently hundreds of human rater hours for datasets of comparable size, with recall rates approaching inter-rater reliability.
  •  
7.
  • Schijven, Dick, et al. (författare)
  • Large-scale analysis of structural brain asymmetries in schizophrenia via the ENIGMA consortium
  • 2023
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences (PNAS). - 0027-8424 .- 1091-6490. ; 120:14
  • Tidskriftsartikel (refereegranskat)abstract
    • Left-right asymmetry is an important organizing feature of the healthy brain that may be altered in schizophrenia, but most studies have used relatively small samples and heterogeneous approaches, resulting in equivocal findings. We carried out the largest case-control study of structural brain asymmetries in schizophrenia, with MRI data from 5,080 affected individuals and 6,015 controls across 46 datasets, using a single image analysis protocol. Asymmetry indexes were calculated for global and regional cortical thickness, surface area, and subcortical volume measures. Differences of asymmetry were calculated between affected individuals and controls per dataset, and effect sizes were meta-analyzed across datasets. Small average case-control differences were observed for thickness asymmetries of the rostral anterior cingulate and the middle temporal gyrus, both driven by thinner left-hemispheric cortices in schizophrenia. Analyses of these asymmetries with respect to the use of antipsychotic medication and other clinical variables did not show any significant associations. Assessment of age- and sex-specific effects revealed a stronger average leftward asymmetry of pallidum volume between older cases and controls. Case-control differences in a multivariate context were assessed in a subset of the data (N = 2,029), which revealed that 7% of the variance across all structural asymmetries was explained by case-control status. Subtle case-control differences of brain macrostructural asymmetry may reflect differences at the molecular, cytoarchitectonic, or circuit levels that have functional relevance for the disorder. Reduced left middle temporal cortical thickness is consistent with altered left-hemisphere language network organization in schizophrenia.
  •  
8.
  • Tahmasian, Masoud, et al. (författare)
  • ENIGMA-Sleep : Challenges, opportunities, and the road map
  • 2021
  • Ingår i: Journal of Sleep Research. - : Wiley. - 0962-1105 .- 1365-2869. ; 30:6
  • Forskningsöversikt (refereegranskat)abstract
    • Neuroimaging and genetics studies have advanced our understanding of the neurobiology of sleep and its disorders. However, individual studies usually have limitations to identifying consistent and reproducible effects, including modest sample sizes, heterogeneous clinical characteristics and varied methodologies. These issues call for a large-scale multi-centre effort in sleep research, in order to increase the number of samples, and harmonize the methods of data collection, preprocessing and analysis using pre-registered well-established protocols. The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) consortium provides a powerful collaborative framework for combining datasets across individual sites. Recently, we have launched the ENIGMA-Sleep working group with the collaboration of several institutes from 15 countries to perform large-scale worldwide neuroimaging and genetics studies for better understanding the neurobiology of impaired sleep quality in population-based healthy individuals, the neural consequences of sleep deprivation, pathophysiology of sleep disorders, as well as neural correlates of sleep disturbances across various neuropsychiatric disorders. In this introductory review, we describe the details of our currently available datasets and our ongoing projects in the ENIGMA-Sleep group, and discuss both the potential challenges and opportunities of a collaborative initiative in sleep medicine.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy