SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kolb S.) ;hsvcat:2"

Sökning: WFRF:(Kolb S.) > Teknik

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Biollaz, S., et al. (författare)
  • Gas analysis in gasification of biomass and waste : Guideline report: Document 1
  • 2018
  • Rapport (refereegranskat)abstract
    • Gasification is generally acknowledged as one of the technologies that will enable the large-scale production of biofuels and chemicals from biomass and waste. One of the main technical challenges associated to the deployment of biomass gasification as a commercial technology is the cleaning and upgrading of the product gas. The contaminants of product gas from biomass/waste gasification include dust, tars, alkali metals, BTX, sulphur-, nitrogen- and chlorine compounds, and heavy metals. Proper measurement of the components and contaminants of the product gas is essential for the monitoring of gasification-based plants (efficiency, product quality, by-products), as well as for the proper design of the downstream gas cleaning train (for example, scrubbers, sorbents, etc.). In practice, a trade-off between reliability, accuracy and cost has to be reached when selecting the proper analysis technique for a specific application. The deployment and implementation of inexpensive yet accurate gas analysis techniques to monitor the fate of gas contaminants might play an important role in the commercialization of biomass and waste gasification processes.This special report commissioned by the IEA Bioenergy Task 33 group compiles a representative part of the extensive work developed in the last years by relevant actors in the field of gas analysis applied to(biomass and waste) gasification. The approach of this report has been based on the creation of a team of contributing partners who have supplied material to the report. This networking approach has been complemented with a literature review. The report is composed of a set of 2 documents. Document 1(the present report) describes the available analysis techniques (both commercial and underdevelopment) for the measurement of different compounds of interest present in gasification gas. The objective is to help the reader to properly select the analysis technique most suitable to the target compounds and the intended application. Document 1 also describes some examples of application of gas analysis at commercial-, pilot- and research gasification plants, as well as examples of recent and current joint research activities in the field. The information contained in Document 1 is complemented with a book of factsheets on gas analysis techniques in Document 2, and a collection of video blogs which illustrate some of the analysis techniques described in Documents 1 and 2.This guideline report would like to become a platform for the reinforcement of the network of partners working on the development and application of gas analysis, thus fostering collaboration and exchange of knowledge. As such, this report should become a living document which incorporates in future coming progress and developments in the field.
  •  
2.
  • Biollaz, S., et al. (författare)
  • Gas analysis in gasification of biomass and waste : Guideline report: Document 2 - Factsheets on gas analysis techniques
  • 2018
  • Rapport (refereegranskat)abstract
    • Gasification is generally acknowledged as one of the technologies that will enable the large-scale production of biofuels and chemicals from biomass and waste. One of the main technical challenges associated to the deployment of biomass gasification as a commercial technology is the cleaning and upgrading of the product gas. The contaminants of product gas from biomass/waste gasification include dust, tars, alkali metals, BTX, sulphur-, nitrogen- and chlorine compounds, and heavy metals. Proper measurement of the components and contaminants of the product gas is essential for the monitoring of gasification-based plants (efficiency, product quality, by-products), as well as for the proper design of the downstream gas cleaning train (for example, scrubbers, sorbents, etc.). The deployment and implementation of inexpensive yet accurate gas analysis techniques to monitor the fate of gas contaminants might play an important role in the commercialization of biomass and waste gasification processes.This special report commissioned by the IEA Bioenergy Task 33 group compiles a representative part of the extensive work developed in the last years by relevant actors in the field of gas analysis applied to (biomass and waste) gasification. The approach of this report has been based on the creation of a team of contributing partners who have supplied material to the report. This networking approach has been complemented with a literature review. This guideline report would like to become a platform for the reinforcement of the network of partners working on the development and application of gas analysis, thus fostering collaboration and exchange of knowledge. As such, this report should become a living document which incorporates in future coming progress and developments in the field.
  •  
3.
  • Klein, Andreas, et al. (författare)
  • The Fermi energy as common parameter to describe charge compensation mechanisms: A path to Fermi level engineering of oxide electroceramics
  • 2023
  • Ingår i: Journal of Electroceramics. - 1573-8663 .- 1385-3449. ; 51
  • Tidskriftsartikel (refereegranskat)abstract
    • Chemical substitution, which can be iso- or heterovalent, is the primary strategy to tailor material properties. There are various ways how a material can react to substitution. Isovalent substitution changes the density of states while heterovalent substitution, i.e. doping, can induce electronic compensation, ionic compensation, valence changes of cations or anions, or result in the segregation or neutralization of the dopant. While all these can, in principle, occur simultaneously, it is often desirable to select a certain mechanism in order to determine material properties. Being able to predict and control the individual compensation mechanism should therefore be a key target of materials science. This contribution outlines the perspective that this could be achieved by taking the Fermi energy as a common descriptor for the different compensation mechanisms. This generalization becomes possible since the formation enthalpies of the defects involved in the various compensation mechanisms do all depend on the Fermi energy. In order to control material properties, it is then necessary to adjust the formation enthalpies and charge transition levels of the involved defects. Understanding how these depend on material composition will open up a new path for the design of materials by Fermi level engineering.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy