SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kolb S.) ;hsvcat:4"

Sökning: WFRF:(Kolb S.) > Lantbruksvetenskap

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hudson, Lawrence N., et al. (författare)
  • The PREDICTS database : a global database of how local terrestrial biodiversity responds to human impacts
  • 2014
  • Ingår i: Ecology and Evolution. - : Wiley. - 2045-7758. ; 4:24, s. 4701-4735
  • Tidskriftsartikel (refereegranskat)abstract
    • Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species' threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project - and avert - future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups - including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems - ). We make site-level summary data available alongside this article. The full database will be publicly available in 2015.
  •  
2.
  • Ma, S., et al. (författare)
  • Plant-soil feedbacks of forest understorey plants transplanted in nonlocal soils along a latitudinal gradient
  • 2019
  • Ingår i: Plant Biology. - : Wiley. - 1435-8603 .- 1438-8677. ; 21:4, s. 677-687
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change is driving movements of many plants beyond, as well as within, their current distributional ranges. Even migrant plants moving within their current range may experience different plant-soil feedbacks (PSF) because of divergent nonlocal biotic soil conditions. Yet, our understanding to what extent soil biotic conditions can affect the performance of within-range migrant plants is still very limited. We assessed the emergence and growth of migrant forest herbs (Milium effusum and Stachys sylvatica) using soils and seeds collected along a 1,700 km latitudinal gradient across Europe. Soil biota were manipulated through four soil treatments, i.e. unsterilized control soil (PSFUS), sterilized soil (PSFS), sterilized soil inoculated with unsterilized home soil (PSFS+HI) and sterilized soil inoculated with unsterilized foreign soil (PSFS+FI, expected to occur when both plants and soil biota track climate change). Compared to PSFS, PSFUS had negative effects on the growth but not emergence of both species, while PSFS+FI only affected S. sylvatica across all seed provenances. When considering seed origin, seedling emergence and growth responses to nonlocal soils depended on soil biotic conditions. Specifically, the home-away distance effect on seedling emergence differed between the four treatments, and significant responses to chemistry either disappeared (M. effusum) or changed (S. sylvatica) from PSFUS to PSFS. Soil biota emerge as an important driver of the estimated plant migration success. Our results of the effects of soil microorganisms on plant establishment provide relevant information for predictions of the distribution and dynamics of plant species in a changing climate.
  •  
3.
  • De Frenne, P, et al. (författare)
  • Significant effects of temperature on the reproductive output of the forest herb Anemone nemorosa L.
  • 2010
  • Ingår i: Forest Ecology and Management. - : Elsevier BV. - 0378-1127 .- 1872-7042. ; 259:4, s. 809-817
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate warming is already influencing plant migration in different parts of the world.Numerous modelshave been developed to forecast future plant distributions. Few studies, however, have investigated thepotential effect of warming on the reproductive output of plants. Understorey forest herbs in particular,have received little attention in the debate on climate change impacts.This study focuses on the effect of temperature on sexual reproductive output (number of seeds, seedmass, germination percentage and seedling mass) of Anemone nemorosa L., a model species for slowcolonizing herbaceous forest plants. We sampled seeds of A. nemorosa in populations along a 2400 kmlatitudinal gradient from northern France to northern Sweden during three growing seasons (2005, 2006and 2008). This study design allowed us to isolate the effects of accumulated temperature (GrowingDegree Hours; GDH) from latitude and the local abiotic and biotic environment. Germination and seedsowing trials were performed in incubators, a greenhouse and under field conditions in a forest. Finally,we disentangled correlations between the different reproductive traits of A. nemorosa along thelatitudinal gradient.We found a clear positive relationship between accumulated temperature and seed and seedlingtraits: reproductive output of A. nemorosa improved with increasing GDH along the latitudinal gradient.Seedmass and seedling mass, for instance, increased by 9.7% and 10.4%, respectively, for every 1000 8C hincrease in GDH.Wealso derived strong correlations between several seed and seedling traits both underfield conditions and in incubators. Our results indicate that seed mass, incubator-based germinationpercentage (Germ%Inc) and the output of germinable seeds (product of number of seeds and Germ%Incdivided by 100) from plants grown along a latitudinal gradient (i.e. at different temperature regimes)provide valuable proxies to parameterize key population processes in models.We conclude that (1) climate warming may have a pronounced positive impact on sexualreproduction of A. nemorosa and (2) climate models forecasting plant distributions would benefit fromincluding the temperature sensitivity of key seed traits and population processes.
  •  
4.
  • De Frenne, P., et al. (författare)
  • A latitudinal gradient in seed nutrients of the forest herb Anemone nemorosa
  • 2011
  • Ingår i: Plant Biology. - : Wiley. - 1435-8603 .- 1438-8677. ; 13:3, s. 493-501
  • Tidskriftsartikel (refereegranskat)abstract
    • The nutrient concentration in seeds determines many aspects of potential success of the sexual reproductive phase of plants, including the seed predation probability, efficiency of seed dispersal and seedling performance. Despite considerable research interest in latitudinal gradients of foliar nutrients, a similar gradient for seeds remains unexplored. We investigated a potential latitudinal gradient in seed nutrient concentrations within the widespread European understorey forest herb Anemone nemorosa L. We sampled seeds of A. nemorosa in 15 populations along a 1900-km long latitudinal gradient at three to seven seed collection dates post-anthesis and investigated the relative effects of growing degree-hours > 5 degrees C, soil characteristics and latitude on seed nutrient concentrations. Seed nitrogen, nitrogen:phosphorus ratio and calcium concentration decreased towards northern latitudes, while carbon:nitrogen ratios increased. When taking differences in growing degree-hours and measured soil characteristics into account and only considering the most mature seeds, the latitudinal decline remained particularly significant for seed nitrogen concentration. We argue that the decline in seed nitrogen concentration can be attributed to northward decreasing seed provisioning due to lower soil nitrogen availability or greater investment in clonal reproduction. This pattern may have large implications for the reproductive performance of this forest herb as the degree of seed provisioning ultimately co-determines seedling survival and reproductive success.
  •  
5.
  • De Frenne, P, et al. (författare)
  • Unraveling the effects of temperature, latitude and local environment on the reproduction of six forest herbs.
  • 2009
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 18:6, s. 641-651
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim To investigate the effect of temperature, latitude and local environment on the reproductive traits of widespread perennial forest herbs to better understand the potential impacts of rising temperatures on their population dynamics and colonization capacities.Location Six regions along a latitudinal gradient from France to Sweden.Methods Within each region, we collected data from three to five populations of up to six species. For each species, several variables were recorded in each region (temperature, latitude) and population (local abiotic and biotic environmental variables), and seed production and germination were estimated. Resource investment in reproduction (RIR) was quantified as seed number × seed mass, while germinable seed output (GSO) was expressed as seed number × germination percentage. We performed linear regression and mixed effect models to investigate the effects of temperature (growing degree hours), latitude and local abiotic and biotic environment on RIR and GSO.Results Temperature and latitude explained most of the variation in RIR and GSO for early flowering species with a northerly distribution range edge (Anemone nemorosa, Paris quadrifolia and Oxalis acetosella). Reproduction of the more southerly distributed species (Brachypodium sylvaticum, Circaea lutetiana and Primula elatior), in contrast, was independent of temperature/latitude. In the late summer species, B. sylvaticum and C. lutetiana, variation in RIR and GSO was best explained by local environmental variables, while none of the investigated variables appeared to be related to reproduction in P. elatior.Main conclusions We showed that reproduction of only two early flowering, northerly distributed species was related to temperature. This suggests that the potential reproductive response of forest herbs to climate warming partly depends on their phenology and distribution, but also that the response is to some extent species dependent. These findings should be taken into account when predictions about future shifts in distribution range are made.
  •  
6.
  • Kolb, Gundula S., et al. (författare)
  • Effects of Nesting Cormorants (Phalacrocorax carbo) on Soil Chemistry, Microbial Communities and Soil Fauna
  • 2015
  • Ingår i: Ecosystems. - : Springer Science and Business Media LLC. - 1432-9840 .- 1435-0629. ; 18:4, s. 643-657
  • Tidskriftsartikel (refereegranskat)abstract
    • Seabirds act as vectors transporting marine nutrients to land by feeding on fish while nesting and roosting on islands. By depositing large amounts of nutrient-rich guano on their nesting islands they strongly affect island soils, vegetation and consumers. However, few studies have investigated how nesting seabirds affect soil communities. In this study, we investigated how cormorant nesting colonies affect soil chemistry, soil microbes and soil and litter fauna on their nesting islands in the Stockholm archipelago, Sweden. We found that cormorant colonies strongly increase organic soil N and P concentrations, and the effect is stronger close to cormorant nests. Microbial communities were studied by extracting phospholipid fatty acids (PLFA) from the soil. The total amounts of PLFA and the amount of PLFA indicating bacterial biomass were lower on active cormorant islands than on reference islands. Furthermore, PLFA structure and thus microbial community structure differed between cormorant and reference islands. Among ten investigated soil and litter arthropod groups three groups (Thysanoptera, Araneae and Oribatida) showed lower densities and one group (Astigmata) showed higher densities in soils on active cormorant than on reference islands. Some arthropod groups showed strong spatial variation on the cormorant islands. Astigmata, Mesostigmata and Diptera showed higher densities in soil samples close to cormorant nests, whereas Oribatida, Collembola and Hemiptera showed lower densities in litter samples close to cormorant nests than in samples taken 3-20 m away from nests. Overall, the cormorant colonies strongly affected soil ecosystems of their nesting islands, but causal correlations between arthropod densities and soil factors were difficult to reveal. One likely reason may be that nesting cormorant islands are very heterogeneous habitats showing large spatial variation in both soil properties as well as fauna densities.
  •  
7.
  • Kolb, Gundula S., et al. (författare)
  • The impact of nesting cormorants on plant and arthropod diversity
  • 2012
  • Ingår i: Ecography. - : Wiley. - 0906-7590 .- 1600-0587. ; 35:8, s. 726-740
  • Tidskriftsartikel (refereegranskat)abstract
    • Seabirds can strongly affect several major factors correlated with species diversity by concentrating marine nutrients on their nesting islands and by physically disturbing island vegetation. In this study, we investigated the effects of nesting cormorants on the abundance, species richness, and composition of plants and arthropods (Coleoptera, Heteroptera, Araneae, and Chironomidae) on islands in Stockholm archipelago, Sweden. Nesting cormorants negatively affected plant species richness and vegetation cover and that changed plant species composition. The effect of nesting cormorants on island arthropods varied between feeding groups and sampling methods. Most orders did not change in abundance or species richness but some, such as coleopterans and spiders changed in species composition. Herbivorous coleopterans were generally negatively affected by cormorants whereas fungivorous species and scavengers were generally positively affected. In structural equation modeling we found that the effect of cormorants was sometimes direct, such as on scavengers, but many effects on island consumers were mediated by changes in vegetation caused by cormorant presence. Overall, arthropod communities were highly dissimilar between cormorant and reference islands, and we therefore conclude that nesting cormorants not only affect the diversity of their nesting islands but also of the archipelago as a whole. The total diversity in the archipelago may increase through regional increased habitat heterogeneity and by adding species which are favored by seabirds (e.g. scavenging and fungivorous coleopterans).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy