SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kolonel Laurence) ;pers:(Boeing Heiner)"

Sökning: WFRF:(Kolonel Laurence) > Boeing Heiner

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahn, Jiyoung, et al. (författare)
  • Quantitative trait loci predicting circulating sex steroid hormones in men from the NCI-Breast and Prostate Cancer Cohort Consortium (BPC3).
  • 2009
  • Ingår i: Human molecular genetics. - : Oxford University Press (OUP). - 1460-2083 .- 0964-6906. ; 18:19, s. 3749-57
  • Tidskriftsartikel (refereegranskat)abstract
    • Twin studies suggest a heritable component to circulating sex steroid hormones and sex hormone-binding globulin (SHBG). In the NCI-Breast and Prostate Cancer Cohort Consortium, 874 SNPs in 37 candidate genes in the sex steroid hormone pathway were examined in relation to circulating levels of SHBG (N = 4720), testosterone (N = 4678), 3 alpha-androstanediol-glucuronide (N = 4767) and 17beta-estradiol (N = 2014) in Caucasian men. rs1799941 in SHBG is highly significantly associated with circulating levels of SHBG (P = 4.52 x 10(-21)), consistent with previous studies, and testosterone (P = 7.54 x 10(-15)), with mean difference of 26.9 and 14.3%, respectively, comparing wild-type to homozygous variant carriers. Further noteworthy novel findings were observed between SNPs in ESR1 with testosterone levels (rs722208, mean difference = 8.8%, P = 7.37 x 10(-6)) and SRD5A2 with 3 alpha-androstanediol-glucuronide (rs2208532, mean difference = 11.8%, P = 1.82 x 10(-6)). Genetic variation in genes in the sex steroid hormone pathway is associated with differences in circulating SHBG and sex steroid hormones.
  •  
2.
  •  
3.
  • Cox, David G., et al. (författare)
  • A comprehensive analysis of the androgen receptor gene and risk of breast cancer: results from the National Cancer Institute Breast and Prostate Cancer Cohort Consortium (BPC3)
  • 2006
  • Ingår i: Breast Cancer Research. - : Springer Science and Business Media LLC. - 1465-5411 .- 1465-542X. ; 8:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction Androgens have been hypothesised to influence risk of breast cancer through several possible mechanisms, including their conversion to estradiol or their binding to the oestrogen receptor and/ or androgen receptor ( AR) in the breast. Here, we report on the results of a large and comprehensive study of the association between genetic variation in the AR gene and risk of breast cancer in the National Cancer Institute Breast and Prostate Cancer Cohort Consortium ( BPC3). Methods The underlying genetic variation was determined by first sequencing the coding regions of the AR gene in a panel of 95 advanced breast cancer cases. Second, a dense set of markers from the public database was genotyped in a panel of 349 healthy women. The linkage disequilibrium relationships ( blocks) across the gene were then identified, and haplotypetagging single nucleotide polymorphisms ( htSNPs) were selected to capture the common genetic variation across the locus. The htSNPs were then genotyped in the nested breast cancer cases and controls from the Cancer Prevention Study II, European Prospective Investigation into Cancer and Nutrition, Multiethnic Cohort, Nurses' Health Study, and Women's Health Study cohorts ( 5,603 breast cancer cases and 7,480 controls). Results We found no association between any genetic variation ( SNP, haplotype, or the exon 1 CAG repeat) in the AR gene and risk of breast cancer, nor were any statistical interactions with known breast cancer risk factors observed. Conclusion Among postmenopausal Caucasian women, common variants of the AR gene are not associated with risk of breast cancer.
  •  
4.
  • Cox, David G, et al. (författare)
  • Haplotypes of the estrogen receptor beta gene and breast cancer risk
  • 2008
  • Ingår i: International Journal of Cancer. - : Wiley. - 0020-7136. ; 122:2, s. 387-392
  • Tidskriftsartikel (refereegranskat)abstract
    • Exposure to exogenous (oral contraceptives, postmenopausal hormone therapy) and endogenous (number of ovulatory cycles, adiposity) steroid hormones is associated with breast cancer risk. Breast cancer risk associated with these exposures could hypothetically be modified by genes in the steroid hormone synthesis, metabolism and signaling pathways. Estrogen receptors are the first step along the path of signaling cell growth and development upon stimulation with estrogens. The National Cancer Institute Breast and Prostate Cancer Cohort Consortium has systematically selected haplotype tagging SNPs in genes along the steroid hormone synthesis, metabolism and binding pathways, including the estrogen receptor beta (ESR2) gene. Four htSNPs tag the 6 major (>5% frequency) haplotypes of the ESR2 gene. These polymorphisms have been genotyped in 5,789 breast cancer cases and 7,761 controls nested within the American Cancer Society Cancer Prevention Study II, European Prospective Investigation into Cancer and Nutrition, Multiethnic Cohort, Nurses' Health Study and Women's Health Study cohorts. None of the SNPs were independently associated with breast cancer risk. One haplotype of the ESR2 gene was associated with breast cancer risk before correction for multiple testing (OR 1.17, 95% CI 1.07-1.28, p = 0.0007). This haplotype remained associated with breast cancer risk after adjustment for multiple testing using a permutation procedure. There was no statistically significant heterogeneity in SNP or haplotype odds ratios across cohorts. These data suggest that inherited variants in ESR2 (while possibly conferring a small increased risk of breast cancer) are not associated with appreciable (OR > 1.2) changes in breast cancer risk among Caucasian women.
  •  
5.
  • Dossus, Laure, et al. (författare)
  • PTGS2 and IL6 genetic variation and risk of breast and prostate cancer : results from the Breast and Prostate Cancer Cohort Consortium (BPC3)
  • 2010
  • Ingår i: Carcinogenesis. - : Oxford University Press (OUP). - 0143-3334 .- 1460-2180. ; 31:3, s. 455-461
  • Tidskriftsartikel (refereegranskat)abstract
    • Genes involved in the inflammation pathway have been associated with cancer risk. Genetic variants in the interleukin-6 (IL6) and prostaglandin-endoperoxide synthase-2 (PTGS2, encoding for the COX-2 enzyme) genes, in particular, have been related to several cancer types, including breast and prostate cancers. We conducted a study within the Breast and Prostate Cancer Cohort Consortium to examine the association between IL6 and PTGS2 polymorphisms and breast and prostate cancer risk. Twenty-seven polymorphisms, selected by pairwise tagging, were genotyped on 6292 breast cancer cases and 8135 matched controls and 8008 prostate cancer cases and 8604 matched controls. The large sample sizes and comprehensive single nucleotide polymorphism tagging in this study gave us excellent power to detect modest effects for common variants. After adjustment for multiple testing, none of the associations examined remained statistically significant at P = 0.01. In analyses not adjusted for multiple testing, one IL6 polymorphism (rs6949149) was marginally associated with breast cancer risk (TT versus GG, odds ratios (OR): 1.32; 99% confidence intervals (CI): 1.00-1.74, P(trend) = 0.003) and two were marginally associated with prostate cancer risk (rs6969502-AA versus rs6969502-GG, OR: 0.87, 99% CI: 0.75-1.02; P(trend) = 0.002 and rs7805828-AA versus rs7805828-GG, OR: 1.11, 99% CI: 0.99-1.26; P(trend) = 0.007). An increase in breast cancer risk was observed for the PTGS2 polymorphism rs7550380 (TT versus GG, OR: 1.38, 99% CI: 1.04-1.83). No association was observed between PTGS2 polymorphisms and prostate cancer risk. In conclusion, common genetic variation in these two genes might play at best a limited role in breast and prostate cancers.
  •  
6.
  • Gu, Fangyi, et al. (författare)
  • Eighteen insulin-like growth factor pathway genes, circulating levels of IGF-I and its binding protein, and risk of prostate and breast cancer
  • 2010
  • Ingår i: Cancer Epidemiology, Biomarkers and Prevention. - : American Association for Cancer Research. - 1055-9965 .- 1538-7755. ; 19:11, s. 2877-2887
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Circulating levels of insulin-like growth factor I (IGF-I) and its main binding protein, IGF binding protein 3 (IGFBP-3), have been associated with risk of several types of cancer. Heritable factors explain up to 60% of the variation in IGF-I and IGFBP-3 in studies of adult twins.Methods: We systematically examined common genetic variation in 18 genes in the IGF signaling pathway for associations with circulating levels of IGF-I and IGFBP-3. A total of 302 single nucleotide polymorphisms (SNP) were genotyped in >5,500 Caucasian men and 5,500 Caucasian women from the Breast and Prostate Cancer Cohort Consortium.Results: After adjusting for multiple testing, SNPs in the IGF1 and SSTR5 genes were significantly associated with circulating IGF-I (P < 2.1 × 10−4); SNPs in the IGFBP3 and IGFALS genes were significantly associated with circulating IGFBP-3. Multi-SNP models explained R2 = 0.62% of the variation in circulating IGF-I and 3.9% of the variation in circulating IGFBP-3. We saw no significant association between these multi-SNP predictors of circulating IGF-I or IGFBP-3 and risk of prostate or breast cancers.Conclusion: Common genetic variation in the IGF1 and SSTR5 genes seems to influence circulating IGF-I levels, and variation in IGFBP3 and IGFALS seems to influence circulating IGFBP-3. However, these variants explain only a small percentage of the variation in circulating IGF-I and IGFBP-3 in Caucasian men and women.Impact: Further studies are needed to explore contributions from other genetic factors such as rare variants in these genes and variation outside of these genes.
  •  
7.
  •  
8.
  • Huesing, Anika, et al. (författare)
  • Prediction of breast cancer risk by genetic risk factors, overall and by hormone receptor status
  • 2012
  • Ingår i: Journal of Medical Genetics. - : BMJ. - 0022-2593 .- 1468-6244. ; 49:9, s. 601-608
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective There is increasing interest in adding common genetic variants identified through genome wide association studies (GWAS) to breast cancer risk prediction models. First results from such models showed modest benefits in terms of risk discrimination. Heterogeneity of breast cancer as defined by hormone-receptor status has not been considered in this context. In this study we investigated the predictive capacity of 32 GWAS-detected common variants for breast cancer risk, alone and in combination with classical risk factors, and for tumours with different hormone receptor status. Material and methods Within the Breast and Prostate Cancer Cohort Consortium, we analysed 6009 invasive breast cancer cases and 7827 matched controls of European ancestry, with data on classical breast cancer risk factors and 32 common gene variants identified through GWAS. Discriminatory ability with respect to breast cancer of specific hormone receptor-status was assessed with the age adjusted and cohort-adjusted concordance statistic (AUROC(a)). Absolute risk scores were calculated with external reference data. Integrated discrimination improvement was used to measure improvements in risk prediction. Results We found a small but steady increase in discriminatory ability with increasing numbers of genetic variants included in the model (difference in AUROC(a) going from 2.7% to 4%). Discriminatory ability for all models varied strongly by hormone receptor status. Discussion and conclusions Adding information on common polymorphisms provides small but statistically significant improvements in the quality of breast cancer risk prediction models. We consistently observed better performance for receptor-positive cases, but the gain in discriminatory quality is not sufficient for clinical application.
  •  
9.
  • Huyghe, Jeroen R., et al. (författare)
  • Discovery of common and rare genetic risk variants for colorectal cancer
  • 2019
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 51:1, s. 76-
  • Tidskriftsartikel (refereegranskat)abstract
    • To further dissect the genetic architecture of colorectal cancer (CRC), we performed whole-genome sequencing of 1,439 cases and 720 controls, imputed discovered sequence variants and Haplotype Reference Consortium panel variants into genome-wide association study data, and tested for association in 34,869 cases and 29,051 controls. Findings were followed up in an additional 23,262 cases and 38,296 controls. We discovered a strongly protective 0.3% frequency variant signal at CHD1. In a combined meta-analysis of 125,478 individuals, we identified 40 new independent signals at P < 5 x 10(-8), bringing the number of known independent signals for CRC to similar to 100. New signals implicate lower-frequency variants, Kruppel-like factors, Hedgehog signaling, Hippo-YAP signaling, long noncoding RNAs and somatic drivers, and support a role for immune function. Heritability analyses suggest that CRC risk is highly polygenic, and larger, more comprehensive studies enabling rare variant analysis will improve understanding of biology underlying this risk and influence personalized screening strategies and drug development.
  •  
10.
  • Key, Timothy J., et al. (författare)
  • Carotenoids, retinol, tocopherols, and prostate cancer risk : pooled analysis of 15 studies
  • 2015
  • Ingår i: American Journal of Clinical Nutrition. - : Elsevier BV. - 0002-9165 .- 1938-3207. ; 102:5, s. 1142-1157
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Individual studies have suggested that circulating carotenoids, retinol, or tocopherols may be associated with prostate cancer risk, but the studies have not been large enough to provide precise estimates of associations, particularly by stage and grade of disease. Objective: The objective of this study was to conduct a pooled analysis of the associations of the concentrations of 7 carotenoids, retinol, alpha-tocopherol, and gamma-tocopherol with risk of prostate cancer and to describe whether any associations differ by stage or grade of the disease or other factors. Design: Principal investigators of prospective studies provided individual participant data for prostate cancer cases and controls. Risk by study-specific fifths of each biomarker was estimated by using multivariable-adjusted conditional logistic regression in matched case-control sets. Results: Data were available for up to 11,239 cases (including 1654 advanced stage and 1741 aggressive) and 18,541 controls from 15 studies. Lycopene was not associated with overall risk of prostate cancer, but there was statistically significant heterogeneity by stage of disease, and the OR for aggressive disease for the highest compared with the lowest fifth of lycopene was 0.65 (95% CI: 0.46, 0.91; P-trend = 0.032). No other carotenoid was significantly associated with overall risk of prostate cancer or with risk of advanced-stage or aggressive disease. For retinol, the OR for the highest compared with the lowest fifth was 1.13 (95% CI: 1.04, 1.22; P-trend = 0.015). For alpha-tocopherol, the OR for the highest compared with the lowest fifth was 0.86 (95% CI: 0.78, 0.94; P-trend < 0.001), with significant heterogeneity by stage of disease; the OR for aggressive prostate cancer was 0.74 (95% CI: 0.59, 0.92; P-trend = 0.001). gamma-Tocopherol was not associated with risk. Conclusions: Overall prostate cancer risk was positively associated with retinol and inversely associated with alpha-tocopherol, and risk of aggressive prostate cancer was inversely associated with lycopene and alpha-tocopherol. Whether these associations reflect causal relations is unclear.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy