SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Komorowski Jan) ;pers:(Ameur Adam)"

Sökning: WFRF:(Komorowski Jan) > Ameur Adam

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Birney, Ewan, et al. (författare)
  • Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project
  • 2007
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 447:7146, s. 799-816
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses. Together, our results advance the collective knowledge about human genome function in several major areas. First, our studies provide convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts, including non-protein-coding transcripts, and those that extensively overlap one another. Second, systematic examination of transcriptional regulation has yielded new understanding about transcription start sites, including their relationship to specific regulatory sequences and features of chromatin accessibility and histone modification. Third, a more sophisticated view of chromatin structure has emerged, including its inter-relationship with DNA replication and transcriptional regulation. Finally, integration of these new sources of information, in particular with respect to mammalian evolution based on inter- and intra-species sequence comparisons, has yielded new mechanistic and evolutionary insights concerning the functional landscape of the human genome. Together, these studies are defining a path for pursuit of a more comprehensive characterization of human genome function.
  •  
2.
  • Ameur, Adam, 1977- (författare)
  • A Bioinformatics Study of Human Transcriptional Regulation
  • 2008
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Regulation of transcription is a central mechanism in all living cells that now can be investigated with high-throughput technologies. Data produced from such experiments give new insights to how transcription factors (TFs) coordinate the gene transcription and thereby regulate the amounts of proteins produced. These studies are also important from a medical perspective since TF proteins are often involved in disease. To learn more about transcriptional regulation, we have developed strategies for analysis of data from microarray and massively parallel sequencing (MPS) experiments.Our computational results consist of methods to handle the steadily increasing amount of data from high-throughput technologies. Microarray data analysis tools have been assembled in the LCB-Data Warehouse (LCB-DWH) (paper I), and other analysis strategies have been developed for MPS data (paper V). We have also developed a de novo motif search algorithm called BCRANK (paper IV).The analysis has lead to interesting biological findings in human liver cells (papers II-V). The investigated TFs appeared to bind at several thousand sites in the genome, that we have identified at base pair resolution. The investigated histone modifications are mainly found downstream of transcription start sites, and correlated to transcriptional activity. These histone marks are frequently found for pairs of genes in a bidirectional conformation. Our results suggest that a TF can bind in the shared promoter of two genes and regulate both of them.From a medical perspective, the genes bound by the investigated TFs are candidates to be involved in metabolic disorders. Moreover, we have developed a new strategy to detect single nucleotide polymorphisms (SNPs) that disrupt the binding of a TF (paper IV). We further demonstrated that SNPs can affect transcription in the immediate vicinity. Ultimately, our method may prove helpful to find disease-causing regulatory SNPs.
  •  
3.
  • Ameur, Adam, et al. (författare)
  • Identification of candidate regulatory SNPs by combination of transcription-factor-binding site prediction, SNP genotyping and haploChIP
  • 2009
  • Ingår i: Nucleic Acids Research. - : Oxford University Press (OUP). - 0305-1048 .- 1362-4962. ; 37:12, s. e85-
  • Tidskriftsartikel (refereegranskat)abstract
    • Disease-associated SNPs detected in large-scale association studies are   frequently located in non-coding genomic regions, suggesting that they may be involved in transcriptional regulation. Here we describe a new strategy for detecting regulatory SNPs (rSNPs), by combining   computational and experimental approaches. Whole genome ChIP-chip data   for USF1 was analyzed using a novel motif finding algorithm called   BCRANK. 1754 binding sites were identified and 140 candidate rSNPs were   found in the predicted sites. For validating their regulatory function,   seven SNPs found to be heterozygous in at least one of four human cell   samples were investigated by ChIP and sequence analysis (haploChIP). In   four of five cases where the SNP was predicted to affect binding, USF1   was preferentially bound to the allele containing the consensus motif.   Allelic differences in binding for other proteins and histone marks   further reinforced the SNPs regulatory potential. Moreover, for one of   these SNPs, H3K36me3 and POLR2A levels at neighboring heterozygous SNPs   indicated effects on transcription. Our strategy, which is entirely   based on in vivo data for both the prediction and validation steps, can   identify individual binding sites at base pair resolution and predict   rSNPs. Overall, this approach can help to pinpoint the causative SNPs   in complex disorders where the associated haplotypes are located in regulatory regions. Availability: BCRANK is available from Bioconductor  (http://www.bioconductor.org).
  •  
4.
  •  
5.
  • Ameur, Adam, et al. (författare)
  • The LCB Data Warehouse
  • 2006
  • Ingår i: Bioinformatics. - : Oxford University Press (OUP). - 1367-4803 .- 1367-4811. ; 22:8, s. 1024-1026
  • Tidskriftsartikel (refereegranskat)abstract
    • The Linnaeus Centre for Bioinformatics Data Warehouse (LCB-DWH) is a web-based infrastructure for reliable and secure microarray gene expression data management and analysis that provides an online service for the scientific community. The LCB-DWH is an effort towards a complete system for storage (using the BASE system), analysis and publication of microarray data. Important features of the system include: access to established methods within R/Bioconductor for data analysis, built-in connection to the Gene Ontology database and a scripting facility for automatic recording and re-play of all the steps of the analysis. The service is up and running on a high performance server. At present there are more than 150 registered users.
  •  
6.
  •  
7.
  • Motallebipour, Mehdi, et al. (författare)
  • Differential binding and co-binding pattern of FOXA1 and FOXA3 and their relation to H3K4me3 in HepG2 cells revealed by ChIP-seq
  • 2009
  • Ingår i: Genome Biology. - : Springer Science and Business Media LLC. - 1465-6906 .- 1474-760X. ; 10:11, s. R129-
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The forkhead box/winged helix family members FOXA1, FOXA2, and FOXA3 are of high importance in development and specification of the hepatic linage and the continued expression of liver-specific genes. RESULTS: Here, we present a genome-wide location analysis of FOXA1 and FOXA3 binding sites in HepG2 cells through chromatin immunoprecipitation with detection by sequencing (ChIP-seq) studies and compare these with our previous results on FOXA2. We found that these factors often bind close to each other in different combinations and consecutive immunoprecipitation of chromatin for one and then a second factor (ChIP-reChIP) shows that this occurs in the same cell and on the same DNA molecule, suggestive of molecular interactions. Using co-immunoprecipitation, we further show that FOXA2 interacts with both FOXA1 and FOXA3 in vivo, while FOXA1 and FOXA3 do not appear to interact. Additionally, we detected diverse patterns of trimethylation of lysine 4 on histone H3 (H3K4me3) at transcriptional start sites and directionality of this modification at FOXA binding sites. Using the sequence reads at polymorphic positions, we were able to predict allele specific binding for FOXA1, FOXA3, and H3K4me3. Finally, several SNPs associated with diseases and quantitative traits were located in the enriched regions. CONCLUSIONS: We find that ChIP-seq can be used not only to create gene regulatory maps but also to predict molecular interactions and to inform on the mechanisms for common quantitative variation.
  •  
8.
  • Motallebipour, Mehdi, et al. (författare)
  • Novel genes in cell cycle control and lipid metabolism with dynamically regulated binding sites for sterol regulatory element-binding protein 1 and RNA polymerase II in HepG2 cells detected by chromatin immunoprecipitation with microarray detection
  • 2009
  • Ingår i: The FEBS Journal. - : Wiley. - 1742-464X .- 1742-4658. ; 276:7, s. 1878-1890
  • Tidskriftsartikel (refereegranskat)abstract
    • Sterol regulatory element-binding proteins 1 and 2 (SREBP-1 and SREBP-2) are important regulators of genes involved in cholesterol and fatty acid metabolism, but have also been implicated in the regulation of the cell cycle and have been associated with the pathogenesis of type 2 diabetes, atherosclerosis and obesity, among others. In this study, we aimed to characterize the binding sites of SREBP-1 and RNA polymerase II through chromatin immunoprecipitation and microarray analysis in 1% of the human genome, as defined by the Encyclopaedia of DNA Elements consortium, in a hepatocellular carcinoma cell line (HepG2). Our data identified novel binding sites for SREBP-1 in genes directly or indirectly involved in cholesterol metabolism, e.g. apolipoprotein C-III (APOC3). The most interesting biological findings were the binding sites for SREBP-1 in genes for host cell factor C1 (HCFC1), involved in cell cycle regulation, and for filamin A (FLNA). For RNA polymerase II, we found binding sites at classical promoters, but also in intergenic and intragenic regions. Furthermore, we found evidence of sterol-regulated binding of SREBP-1 and RNA polymerase II to HCFC1 and FLNA. From the results of this work, we infer that SREBP-1 may be involved in processes other than lipid metabolism.
  •  
9.
  • Orzechowski Westholm, Jakub, 1977-, et al. (författare)
  • Combinatorial control of gene expression by the three yeast repressors Mig1, Mig2 and Mig3
  • 2008
  • Ingår i: BMC Genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 9, s. 601-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Expression of a large number of yeast genes is repressed by glucose. The zinc finger protein Mig1 is the main effector in glucose repression, but yeast also has two related proteins: Mig2 and Mig3. We have used microarrays to study global gene expression in all possible combinations of mig1, mig2 and mig3 deletion mutants. Results: Mig1 and Mig2 repress a largely overlapping set of genes on 2% glucose. Genes that are upregulated in a mig1 mig2 double mutant were grouped according to the contribution of Mig2. Most of them show partially redundant repression, with Mig1 being the major repressor, but some genes show complete redundancy, and some are repressed only by Mig1. Several redundantly repressed genes are involved in phosphate metabolism. The promoters of these genes are enriched for Pho4 sites, a novel GGGAGG motif, and a variant Mig1 site which is absent from genes repressed only by Mig1. Genes repressed only by Mig1 on 2% glucose include the hexose transporter gene HXT4, but Mig2 contributes to HXT4 repression on 10% glucose. HXT6 is one of the few genes that are more strongly repressed by Mig2. Mig3 does not seem to overlap in function with Mig1 and Mig2. Instead, Mig3 downregulates the SIR2 gene encoding a histone deacetylase involved in gene silencing and the control of aging. Conclusions: Mig2 fine-tunes glucose repression by targeting a subset of the Mig1-repressed genes, and by responding to higher glucose concentrations. Mig3 does not target the same genes as Mig1 and Mig2, but instead downregulates the SIR2 gene.
  •  
10.
  • Rada-Iglesias, Alvaro, et al. (författare)
  • Binding sites for metabolic disease related transcription factors inferred at base pair resolution by chromatin immunoprecipitation and genomic microarrays
  • 2005
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 14:22, s. 3435-3447
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a detailed in vivo characterization of hepatocyte transcriptional regulation in HepG2 cells, using chromatin immunoprecipitation and detection on PCR fragment-based genomic tiling path arrays covering the encyclopedia of DNA element (ENCODE) regions. Our data suggest that HNF-4α and HNF-3β, which were commonly bound to distal regulatory elements, may cooperate in the regulation of a large fraction of the liver transcriptome and that both HNF-4α and USF1 may promote H3 acetylation to many of their targets. Importantly, bioinformatic analysis of the sequences bound by each transcription factor (TF) shows an over-representation of motifs highly similar to the in vitro established consensus sequences. On the basis of these data, we have inferred tentative binding sites at base pair resolution. Some of these sites have been previously found by in vitro analysis and some were verified in vitro in this study. Our data suggests that a similar approach could be used for the in vivo characterization of all predicted/uncharacterized TF and that the analysis could be scaled to the whole genome.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy