SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Konno Takuya) "

Sökning: WFRF:(Konno Takuya)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Akimoto, Chizuru, et al. (författare)
  • A blinded international study on the reliability of genetic testing for GGGGCC-repeat expansions in C9orf72 reveals marked differences in results among 14 laboratories
  • 2014
  • Ingår i: Journal of Medical Genetics. - 0022-2593 .- 1468-6244. ; 51:6, s. 419-424
  • Tidskriftsartikel (refereegranskat)abstract
    • Background The GGGGCC-repeat expansion in C9orf72 is the most frequent mutation found in patients with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Most of the studies on C9orf72 have relied on repeat-primed PCR (RP-PCR) methods for detection of the expansions. To investigate the inherent limitations of this technique, we compared methods and results of 14 laboratories. Methods The 14 laboratories genotyped DNA from 78 individuals (diagnosed with ALS or FTD) in a blinded fashion. Eleven laboratories used a combination of amplicon-length analysis and RP-PCR, whereas three laboratories used RP-PCR alone; Southern blotting techniques were used as a reference. Results Using PCR-based techniques, 5 of the 14 laboratories got results in full accordance with the Southern blotting results. Only 50 of the 78 DNA samples got the same genotype result in all 14 laboratories. There was a high degree of false positive and false negative results, and at least one sample could not be genotyped at all in 9 of the 14 laboratories. The mean sensitivity of a combination of amplicon-length analysis and RP-PCR was 95.0% (73.9-100%), and the mean specificity was 98.0% (87.5-100%). Overall, a sensitivity and specificity of more than 95% was observed in only seven laboratories. Conclusions Because of the wide range seen in genotyping results, we recommend using a combination of amplicon-length analysis and RP-PCR as a minimum in a research setting. We propose that Southern blotting techniques should be the gold standard, and be made obligatory in a clinical diagnostic setting.
  •  
2.
  • Konno, Takuya, et al. (författare)
  • Autosomal dominant Parkinson's disease caused by SNCA duplications.
  • 2016
  • Ingår i: Parkinsonism & Related Disorders. - : Elsevier. - 1873-5126. ; 22:sep 3, s. 1-6
  • Tidskriftsartikel (refereegranskat)abstract
    • The discovery in 1997 that mutations in the SNCA gene cause Parkinson's disease (PD) greatly advanced our understanding of this illness. There are pathogenic missense mutations and multiplication mutations in SNCA. Thus, not only a mutant protein, but also an increased dose of wild-type protein can produce autosomal dominant parkinsonism. We review the literature on SNCA duplications and focus on pathologically-confirmed cases. We also report a newly-identified American family with SNCA duplication whose proband was autopsied. We found that over half of the reported cases with SNCA duplication had early-onset parkinsonism and non-motor features, such as dysautonomia, rapid eye movement sleep behavior disorder (RBD), hallucinations (usually visual) and cognitive deficits leading to dementia. Only a few cases have presented with typical features of PD. Our case presented with depression and RBD that preceded parkinsonism, and dysautonomia that led to an initial diagnosis of multiple system atrophy. Dementia and visual hallucinations followed. Our patient and the other reported cases with SNCA duplications had widespread cortical Lewy pathology. Neuronal loss in the hippocampal cornu ammonis 2/3 regions were seen in about half of the autopsied SNCA duplication cases. Similar pathology was also observed in SNCA missense mutation and triplication carriers.
  •  
3.
  • Prudencio, Mercedes, et al. (författare)
  • Toward allele-specific targeting therapy and pharmacodynamic marker for spinocerebellar ataxia type 3
  • 2020
  • Ingår i: Science Translational Medicine. - : American Association for the Advancement of Science (AAAS). - 1946-6242. ; 12:566
  • Tidskriftsartikel (refereegranskat)abstract
    • Spinocerebellar ataxia type 3 (SCA3), caused by a CAG repeat expansion in the ataxin-3 gene (ATXN3), is characterized by neuronal polyglutamine (polyQ) ATXN3 protein aggregates. Although there is no cure for SCA3, gene-silencing approaches to reduce toxic polyQ ATXN3 showed promise in preclinical models. However, a major limitation in translating putative treatments for this rare disease to the clinic is the lack of pharmacodynamic markers for use in clinical trials. Here, we developed an immunoassay that readily detects polyQ ATXN3 proteins in human biological fluids and discriminates patients with SCA3 from healthy controls and individuals with other ataxias. We show that polyQ ATXN3 serves as a marker of target engagement in human fibroblasts, which may bode well for its use in clinical trials. Last, we identified a single-nucleotide polymorphism that strongly associates with the expanded allele, thus providing an exciting drug target to abrogate detrimental events initiated by mutant ATXN3. Gene-silencing strategies for several repeat diseases are well under way, and our results are expected to improve clinical trial preparedness for SCA3 therapies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy