SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kononenko Olga) ;hsvcat:3"

Sökning: WFRF:(Kononenko Olga) > Medicin och hälsovetenskap

  • Resultat 1-10 av 27
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sarkisyan, Daniil, et al. (författare)
  • Downregulation of the endogenous opioid peptides in the dorsal striatum of human alcoholics
  • 2015
  • Ingår i: Frontiers in Cellular Neuroscience. - : Frontiers Media SA. - 1662-5102. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • The endogenous opioid peptides dynorphins and enkephalins may be involved in brain-area specific synaptic adaptations relevant for different stages of an addiction cycle. We compared the levels of prodynorphin (PDYN) and proenkephalin (PENK) mRNAs (by qRT-PCR), and dynorphins and enkephalins (by radioimmunoassay) in the caudate nucleus and putamen between alcoholics and control subjects. We also evaluated whether PDYN promoter variant rs1997794 associated with alcoholism affects PDYN expression. Postmortem specimens obtained from 24 alcoholics and 26 controls were included in final statistical analysis. PDYN mRNA and Met-enkephalin-Arg-Phe, a marker of PENK were downregulated in the caudate of alcoholics, while PDYN mRNA and Leu-enkephalin-Arg, a marker of PDYN were decreased in the putamen of alcoholics carrying high risk rs1997794 C allele. Downregulation of opioid peptides in the dorsal striatum may contribute to development of alcoholism including changes in goal directed behavior and formation of a compulsive habit in alcoholics.
  •  
2.
  • Watanabe, Hiroyuki, et al. (författare)
  • Left-right side-specific neuropeptide mechanism mediates contralateral responses to a unilateral brain injury
  • 2021
  • Ingår i: eNeuro. - : Society for Neuroscience. - 2373-2822. ; 8:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuropeptides are implicated in control of lateralized processes in the brain. A unilateral brain injury (UBI) causes the contra- and ipsilesional side-specific postural and sensorimotor deficits. To examine whether opioid neuropeptides mediate UBI induced asymmetric processes we compared effects of opioid antagonists on the contra- and ipsilesional hindlimb responses to the left- and right-sided injury in rats. UBI induced hindlimb postural asymmetry (HL-PA) with the contralesional hindlimb flexion, and activated contralesional withdrawal reflex of extensor digitorum longus (EDL) evoked by electrical stimulation and recorded with EMG technique. No effects on the interossei (Int) and peroneaus longus (PL) were evident. The general opioid antagonist naloxone blocked postural effects, did not change EDL asymmetry while uncovered cryptic asymmetry in the PL and Int reflexes induced by UBI. Thus the spinal opioid system may either mediate or counteract the injury effects. Strikingly, effects of selective opioid antagonists were the injury side-specific. The mu- and kappa-antagonists beta-funaltrexamine and nor-binaltorphimine, respectively, reduced postural asymmetry after the right but not left UBI. In contrast, the delta-antagonist naltrindole inhibited HL-PA after the left but not right side brain injury. The opioid gene expression and opioid peptides were lateralized in the lumbar spinal cord, and coordination between expression of the opioid and neuroplasticity-related genes was impaired by UBI that together may underlie the side-specific effects of the antagonists. We suggest that mirror-symmetric neural circuits that mediate effects of left and right brain injury on the contralesional hindlimbs are differentially controlled by the lateralized opioid system. Significance statement Functional specialization of the left and right hemispheres is an organizing principle of the brain. Lasting regulation of lateralized processes may be accomplished by paracrine neurohormonal mechanisms that preferentially operate in the left or right hemisphere. Our findings support this hypothesis by demonstration that mirror-symmetric neural circuits that control the left and right hindlimbs may be regulated by the left- and right-side specific neuropeptide mechanisms. Neuropeptides may differentially target the left and right counterparts of these circuits, and in this way control the left-right balance in their functional performance. This bipartite mechanism may be based on lateralization of the neuropeptide systems, and may operate in the spinal cord or control neural pathways descending from the brain to contralateral motoneurons.
  •  
3.
  • Zhang, Mengliang, et al. (författare)
  • Hindlimb motor responses to unilateral brain injury : spinal cord encoding and left-right asymmetry
  • 2020
  • Ingår i: Brain Communications. - : Oxford University Press (OUP). - 2632-1297. ; 2:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Mechanisms of motor deficits (e.g. hemiparesis and hemiplegia) secondary to stroke and traumatic brain injury remain poorly understood. In early animal studies, a unilateral lesion to the cerebellum produced postural asymmetry with ipsilateral hindlimb flexion that was retained after complete spinal cord transection. Here we demonstrate that hindlimb postural asymmetry in rats is induced by a unilateral injury of the hindlimb sensorimotor cortex, and characterize this phenomenon as a model of spinal neuroplasticity underlying asymmetric motor deficits. After cortical lesion, the asymmetry was developed due to the contralesional hindlimb flexion and persisted after decerebration and complete spinal cord transection. The asymmetry induced by the left-side brain injury was eliminated by bilateral lumbar dorsal rhizotomy, but surprisingly, the asymmetry after the right-side brain lesion was resistant to deafferentation. Pancuronium, a curare-mimetic muscle relaxant, abolished the asymmetry after the right-side lesion suggesting its dependence on the efferent drive. The contra- and ipsilesional hindlimbs displayed different musculo-articular resistance to stretch after the left but not right-side injury. The nociceptive withdrawal reflexes evoked by electrical stimulation and recorded with EMG technique were different between the left and right hindlimbs in the spinalized decerebrate rats. On this asymmetric background, a brain injury resulted in greater reflex activation on the contra- versus ipsilesional side; the difference between the limbs was higher after the right-side brain lesion. The unilateral brain injury modified expression of neuroplasticity genes analysed as readout of plastic changes, as well as robustly impaired coordination of their expression within and between the ipsi- and contralesional halves of lumbar spinal cord; the effects were more pronounced after the left side compared to the right-side injury. Our data suggest that changes in the hindlimb posture, resistance to stretch and nociceptive withdrawal reflexes are encoded by neuroplastic processes in lumbar spinal circuits induced by a unilateral brain injury. Two mechanisms, one dependent on and one independent of afferent input may mediate asymmetric hindlimb motor responses. The latter, deafferentation resistant mechanism may be based on sustained muscle contractions which often occur in patients with central lesions and which are not evoked by afferent stimulation. The unusual feature of these mechanisms is their lateralization in the spinal cord.
  •  
4.
  • Bazov, Igor, 1973-, et al. (författare)
  • Dynorphin and κ-Opioid Receptor Dysregulation in the Dopaminergic Reward System of Human Alcoholics.
  • 2018
  • Ingår i: Molecular Neurobiology. - : Springer. - 0893-7648 .- 1559-1182. ; 55:8, s. 7049-7061
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecular changes induced by excessive alcohol consumption may underlie formation of dysphoric state during acute and protracted alcohol withdrawal which leads to craving and relapse. A main molecular addiction hypothesis is that the upregulation of the dynorphin (DYN)/κ-opioid receptor (KOR) system in the nucleus accumbens (NAc) of alcohol-dependent individuals causes the imbalance in activity of D1- and D2 dopamine receptor (DR) expressing neural circuits that results in dysphoria. We here analyzed post-mortem NAc samples of human alcoholics to assess changes in prodynorphin (PDYN) and KOR (OPRK1) gene expression and co-expression (transcriptionally coordinated) patterns. To address alterations in D1- and D2-receptor circuits, we studied the regulatory interactions between these pathways and the DYN/KOR system. No significant differences in PDYN and OPRK1 gene expression levels between alcoholics and controls were evident. However, PDYN and OPRK1 showed transcriptionally coordinated pattern that was significantly different between alcoholics and controls. A downregulation of DRD1 but not DRD2 expression was seen in alcoholics. Expression of DRD1 and DRD2 strongly correlated with that of PDYN and OPRK1 suggesting high levels of transcriptional coordination between these gene clusters. The differences in expression and co-expression patterns were not due to the decline in neuronal proportion in alcoholic brain and thereby represent transcriptional phenomena. Dysregulation of DYN/KOR system and dopamine signaling through both alterations in co-expression patterns of opioid genes and decreased DRD1 gene expression may contribute to imbalance in the activity of D1- and D2-containing pathways which may lead to the negative affective state in human alcoholics.
  •  
5.
  • Bhandage, Amol K., 1988-, et al. (författare)
  • GABA-A and NMDA receptor subunit mRNA expression is altered in the caudate but not the putamen of the postmortem brains of alcoholics
  • 2014
  • Ingår i: Frontiers in Cellular Neuroscience. - : Frontiers. - 1662-5102. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic consumption of alcohol by humans has been shown to lead to impairment of executive and cognitive functions. Here, we have studied the mRNA expression of ion channel receptors for glutamate and GABA in the dorsal striatum of post-mortem brains from alcoholics (n = 29) and normal controls (n = 29), with the focus on the caudate nucleus that is associated with the frontal cortex executive functions and automatic thinking and on the putamen area that is linked to motor cortices and automatic movements. The results obtained by qPCR assay revealed significant changes in the expression of specific excitatory ionotropic glutamate and inhibitory GABA-A receptor subunit genes in the caudate but not the putamen. Thus, in the caudate we found reduced levels of mRNAs encoding the GluN2A glutamate receptor and the δ, ε, and ρ2 GABA-A receptor subunits, and increased levels of the mRNAs encoding GluD1, GluD2, and GABA-A γ1 subunits in the alcoholics as compared to controls. Interestingly in the controls, 11 glutamate and 5 GABA-A receptor genes were more prominently expressed in the caudate than the putamen (fold-increase varied from 1.24 to 2.91). Differences in gene expression patterns between the striatal regions may underlie differences in associated behavioral outputs. Our results suggest an altered balance between caudate-mediated voluntarily controlled and automatic behaviors in alcoholics, including diminished executive control on goal-directed alcohol-seeking behavior.
  •  
6.
  • Jin, Zhe, et al. (författare)
  • Selective increases of AMPA, NMDA, and kainate receptor subunit mRNAs in the hippocampus and orbitofrontal cortex but not in prefrontal cortex of human alcoholics
  • 2014
  • Ingår i: Frontiers in Cellular Neuroscience. - : Frontiers. - 1662-5102. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Glutamate is the main excitatory transmitter in the human brain. Drugs that affect the glutamatergic signaling will alter neuronal excitability. Ethanol inhibits glutamate receptors. We examined the expression level of glutamate receptor subunit mRNAs in human post-mortem samples from alcoholics and compared the results to brain samples from control subjects. RNA from hippocampal dentate gyrus (HP-DG), orbitofrontal cortex (OFC), and dorso-lateral prefrontal cortex (DL-PFC) samples from 21 controls and 19 individuals with chronic alcohol dependence were included in the study. Total RNA was assayed using quantitative RT-PCR. Out of the 16 glutamate receptor subunits, mRNAs encoding two AMPA [2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid] receptor subunits GluA2 and GluA3; three kainate receptor subunits GluK2, GluK3 and GluK5 and five NMDA (N-methyl-D-aspartate) receptor subunits GluN1, GluN2A, GluN2C, GluN2D, and GluN3A were significantly increased in the HP-DG region in alcoholics. In the OFC, mRNA encoding the NMDA receptor subunit GluN3A was increased, whereas in the DL-PFC, no differences in mRNA levels were observed. Our laboratory has previously shown that the expression of genes encoding inhibitory GABA-A receptors is altered in the HP-DG and OFC of alcoholics (Jin et al., 2011). Whether the changes in one neurotransmitter system drives changes in the other or if they change independently is currently not known. The results demonstrate that excessive long-term alcohol consumption is associated with altered expression of genes encoding glutamate receptors in a brain region-specific manner. It is an intriguing possibility that genetic predisposition to alcoholism may contribute to these gene expression changes.
  •  
7.
  • Kononenko, Olga, et al. (författare)
  • Focal traumatic brain injury induces neuroplastic molecular responses in lumbar spinal cord
  • 2019
  • Ingår i: Restorative Neurology and Neuroscience. - : IOS PRESS. - 0922-6028 .- 1878-3627. ; 37:2, s. 87-96
  • Tidskriftsartikel (refereegranskat)abstract
    • Background/Objectives: Motor impairment induced by traumatic brain injury (TBI) may be mediated through changes in spinal molecular systems regulating neuronal plasticity. We assessed whether a focal controlled cortical impact (CCI) TBI in the rat alters expression of the Tgfb1, c-Fos, Bdnf and Gap43 neuroplasticity genes in lumbar spinal cord.Approach/Methods: Adult male Sprague-Dawley rats (n = 8) were subjected to a right-side CCI over the anterior sensorimotor hindlimb representation area or sham-injury (n=8). Absolute expression levels of Tgfb1, c-Fos, Bdnf, and Gapd43 genes were measured by droplet digital PCR in ipsi- and contralesional, dorsal and ventral quadrants of the L4 and L5 spinal cord. The neuronal activity marker c-Fos was analysed by immunohistochemistry in the dorsal L4 and L5 segments. The contra- vs. ipsilesional expression pattern was examined as the asymmetry index, AI.Results: The Tgfb1 mRNA levels were significantly higher in the CCI vs. sham-injured rats, and in the contra- vs. ipsilesional dorsal domains in the CCI group. The number of c-Fos-positive cells was elevated in the L4 and L5 segments; and on the contralesional compared to the ipsilesional side in the CCI group. The c-Fos AI in the dorsal laminae was significantly increased by CCI.Conclusions: The results support the hypothesis that focal TBI induces plastic alterations in the lumbar spinal cord that may contribute to either motor recovery or maladaptive motor responses.
  •  
8.
  • Meng, Weida, et al. (författare)
  • Genotype-dependent epigenetic regulation of DLGAP2 in alcohol use and dependence
  • 2021
  • Ingår i: Molecular Psychiatry. - : Springer Nature. - 1359-4184 .- 1476-5578. ; 26:8, s. 4367-4382
  • Tidskriftsartikel (refereegranskat)abstract
    • Alcohol misuse is a major public health problem originating from genetic and environmental risk factors. Alterations in the brain epigenome may orchestrate changes in gene expression that lead to alcohol misuse and dependence. Through epigenome-wide association analysis of DNA methylation from human brain tissues, we identified a differentially methylated region, DMR-DLGAP2, associated with alcohol dependence. Methylation within DMR-DLGAP2 was found to be genotype-dependent, allele-specific and associated with reward processing in brain. Methylation at the DMR-DLGAP2 regulated expression of DLGAP2 in vitro, and Dlgap2-deficient mice showed reduced alcohol consumption compared with wild-type controls. These results suggest that DLGAP2 may be an interface for genetic and epigenetic factors controlling alcohol use and dependence.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 27
Typ av publikation
tidskriftsartikel (25)
konferensbidrag (2)
Typ av innehåll
refereegranskat (22)
övrigt vetenskapligt/konstnärligt (5)
Författare/redaktör
Kononenko, Olga (27)
Bakalkin, Georgy (25)
Watanabe, Hiroyuki (21)
Sarkisyan, Daniil (19)
Bazov, Igor, 1973- (11)
Yakovleva, Tatiana (9)
visa fler...
Zhang, Mengliang (8)
Schouenborg, Jens (7)
Bazov, Igor (7)
Lukoyanov, Nikolay (7)
Galatenko, Vladimir (6)
Iakovleva, Tatiana (6)
Marklund, Niklas (5)
Carvalho, Liliana S. (4)
Birnir, Bryndis (3)
Jin, Zhe (3)
Hussain, Muhammad Zu ... (3)
Stålhandske, Lada (3)
Rietschel, M (2)
Nyberg, Fred (2)
Syvänen, Ann-Christi ... (2)
Frank, J (2)
Nosova, Olga (2)
Karpyak, V. (2)
Yakovleva, Tatjana (2)
Karpyak, Victor M. (2)
Nylander, Ingrid (1)
Bleich, Stefan (1)
Yoshitake, Takashi (1)
Mulder, Jan (1)
Kehr, Jan (1)
Druid, Henrik (1)
Ossipov, Michael H. (1)
Alkass, Kanar (1)
Rüegg, Joelle (1)
Andrén, Per (1)
Almamoun, Radwa (1)
Biernacka, Joanna M (1)
Biernacka, J. M. (1)
Frye, M. A. (1)
Andersson, Malin (1)
Zhang, Dandan (1)
Bhandage, Amol K., 1 ... (1)
Hallberg, Mathias, 1 ... (1)
Verbeek, Dineke S. (1)
Sommer, Wolfgang H. (1)
Mann, K (1)
Hansson, Anita C (1)
Spanagel, Rainer (1)
Taqi, Malik Mumtaz, ... (1)
visa färre...
Lärosäte
Uppsala universitet (24)
Örebro universitet (11)
Lunds universitet (7)
Karolinska Institutet (5)
Språk
Engelska (27)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (7)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy