SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kopchick John) "

Sökning: WFRF:(Kopchick John)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Allen, David B, et al. (författare)
  • GH Safety Workshop Position Paper: a critical appraisal of recombinant human growth hormone therapy in children and adults.
  • 2016
  • Ingår i: European Journal of Endocrinology. - 1479-683X. ; 174:2, s. 1-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Recombinant human growth hormone (rhGH) has been in use for 30 years, and over that time its safety and efficacy in children and adults has been subject to considerable scrutiny. In 2001, a statement from the GH Research Society (GRS) concluded that 'for approved indications, GH is safe'; however, the statement highlighted a number of areas for on-going surveillance of long-term safety including; cancer risk, impact on glucose homeostasis and use of high dose pharmacological rhGH treatment. Over the intervening years, there have been a number of publications addressing the safety of rhGH with regard to mortality, cancer and cardiovascular risk and the need for longterm surveillance of the increasing number of adults who were treated with rhGH in childhood. Against this backdrop of interest in safety, the European Society of Paediatric Endocrinology (ESPE), the GRS and the Pediatric Endocrine Society (PES) convened a meeting to reappraise the safety of rhGH. The ouput of the meeting is a concise position statement.
  •  
2.
  • Berryman, Darlene E, et al. (författare)
  • Role of the GH/IGF-1 axis in lifespan and healthspan: Lessons from animal models.
  • 2008
  • Ingår i: Growth hormone & IGF research : official journal of the Growth Hormone Research Society and the International IGF Research Society. - : Elsevier BV. - 1096-6374. ; 18:6, s. 455-71
  • Tidskriftsartikel (refereegranskat)abstract
    • Animal models are fundamentally important in our quest to understand the genetic, epigenetic, and environmental factors that contribute to human aging. In comparison to humans, relatively short-lived mammals are useful models as they allow for rapid assessment of both genetic manipulation and environmental intervention as related to longevity. These models also allow for the study of clinically relevant pathologies as a function of aging. Data associated with more distant species offers additional insight and critical consideration of the basic physiological processes and molecular mechanisms that influence lifespan. Consistently, two interventions, caloric restriction and repression of the growth hormone (GH)/insulin-like growth factor-1/insulin axis, have been shown to increase lifespan in both invertebrates and vertebrate animal model systems. Caloric restriction (CR) is a nutrition intervention that robustly extends lifespan whether it is started early or later in life. Likewise, genes involved in the GH/IGF-1 signaling pathways can lengthen lifespan in vertebrates and invertebrates, implying evolutionary conservation of the molecular mechanisms. Specifically, insulin and insulin-like growth factor-1 (IGF-1)-like signaling and its downstream intracellular signaling molecules have been shown to be associated with lifespan in fruit flies and nematodes. More recently, mammalian models with reduced growth hormone (GH) and/or IGF-1 signaling have also been shown to have extended lifespans as compared to control siblings. Importantly, this research has also shown that these genetic alterations can keep the animals healthy and disease-free for longer periods and can alleviate specific age-related pathologies similar to what is observed for CR individuals. Thus, these mutations may not only extend lifespan but may also improve healthspan, the general health and quality of life of an organism as it ages. In this review, we will provide an overview of how the manipulation of the GH/IGF axis influences lifespan, highlight the invertebrate and vertebrate animal models with altered lifespan due to modifications to the GH/IGF-1 signaling cascade or homologous pathways, and discuss the basic phenotypic characteristics and healthspan of these models.
  •  
3.
  • Collett-Solberg, Paulo F., et al. (författare)
  • Diagnosis, Genetics, and Therapy of Short Stature in Children : A Growth Hormone Research Society International Perspective
  • 2019
  • Ingår i: Hormone Research in Paediatrics. - : S. Karger. - 1663-2818 .- 1663-2826. ; 92:1, s. 1-14
  • Tidskriftsartikel (refereegranskat)abstract
    • The Growth Hormone Research Society (GRS) convened a Workshop in March 2019 to evaluate the diagnosis and therapy of short stature in children. Forty-six international experts participated at the invitation of GRS including clinicians, basic scientists, and representatives from regulatory agencies and the pharmaceutical industry. Following plenary presentations addressing the current diagnosis and therapy of short stature in children, breakout groups discussed questions produced in advance by the planning committee and reconvened to share the group reports. A writing team assembled one document that was subsequently discussed and revised by participants. Participants from regulatory agencies and pharmaceutical companies were not part of the writing process. Short stature is the most common reason for referral to the pediatric endocrinologist. History, physical examination, and auxology remain the most important methods for understanding the reasons for the short stature. While some long-standing topics of controversy continue to generate debate, including in whom, and how, to perform and interpret growth hormone stimulation tests, new research areas are changing the clinical landscape, such as the genetics of short stature, selection of patients for genetic testing, and interpretation of genetic tests in the clinical setting. What dose of growth hormone to start, how to adjust the dose, and how to identify and manage a suboptimal response are still topics to debate. Additional areas that are expected to transform the growth field include the development of long-acting growth hormone preparations and other new therapeutics and diagnostics that may increase adult height or aid in the diagnosis of growth hormone deficiency.
  •  
4.
  • Decker, Ralph, 1968, et al. (författare)
  • Long-term Effects of Growth Hormone in Children
  • 2014
  • Ingår i: Update on GH and IGFs, 22-23 maj 2014, Stockholm, Sverige. Nobelforum Karolinska institutet - Svenska Endokrinolog Föreningen.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)
  •  
5.
  • Egecioglu, Emil, 1977, et al. (författare)
  • Growth hormone receptor deficiency results in blunted ghrelin feeding response, obesity, and hypolipidemia in mice.
  • 2006
  • Ingår i: American journal of physiology. Endocrinology and metabolism. - : American Physiological Society. - 0193-1849 .- 1522-1555. ; 290:2, s. E317-25
  • Tidskriftsartikel (refereegranskat)abstract
    • We have previously shown that growth hormone (GH) overexpression in the brain increased food intake, accompanied with increased hypothalamic agouti-related protein (AgRP) expression. Ghrelin, which stimulates both appetite and GH secretion, was injected intracerebroventricularly to GHR-/- and littermate control (+/+) mice to determine whether ghrelin's acute effects on appetite are dependent on GHR signaling. GHR-/- mice were also analyzed with respect to serum levels of lipoproteins, apolipoprotein (apo)B, leptin, glucose, and insulin as well as body composition. Central injection of ghrelin into the third dorsal ventricle increased food consumption in +/+ mice, whereas no change was observed in GHR-/- mice. After ghrelin injection, AgRP mRNA expression in the hypothalamus was higher in +/+ littermates than in GHR-/- mice, indicating a possible importance of AgRP in the GHR-mediated effect of ghrelin. Compared with controls, GHR-/- mice had increased food intake, leptin levels, and total and intra-abdominal fat mass per body weight and deceased lean mass. Moreover, serum levels of triglycerides, LDL and HDL cholesterol, and apoB, as well as glucose and insulin levels were lower in the GHR-/- mice. In summary, ghrelin's acute central action to increase food intake requires functionally intact GHR signaling. Long-term GHR deficiency in mice is associated with high plasma leptin levels, obesity, and increased food intake but a marked decrease in all lipoprotein fractions.
  •  
6.
  • Johannsson, Gudmundur, 1960, et al. (författare)
  • GH deficiency and insensitivity in children and adults.
  • 2021
  • Ingår i: Reviews in endocrine & metabolic disorders. - : Springer Science and Business Media LLC. - 1573-2606 .- 1389-9155. ; 22:1, s. 1-2
  • Forskningsöversikt (refereegranskat)abstract
    • This thematic review includes short reviews on GH deficiency and insensitivity in children and adults from basic science to clinical significance.
  •  
7.
  • Shao, Linus Ruijin, 1964, et al. (författare)
  • Dynamic regulation of estrogen receptor-alpha isoform expression in the mouse fallopian tube: mechanistic insight into estrogen-dependent production and secretion of insulin-like growth factors.
  • 2007
  • Ingår i: American journal of physiology. Endocrinology and metabolism. - : American Physiological Society. - 0193-1849 .- 1522-1555. ; 293:5, s. E1430-42
  • Tidskriftsartikel (refereegranskat)abstract
    • Estrogen receptors (ERs) are members of the nuclear receptor superfamily and are involved in regulation of fallopian tube functions (i.e., enhancement of protein secretion, formation of tubal fluid, and regulation of gamete transport). However, the ER subtype-mediated mechanisms underlying these processes have not been completely clarified. Recently, we identified ERbeta expression and localization in rat fallopian tubes, suggesting a potential biological function of ERbeta related to calcium-dependent ciliated beating. Here we provide for the first time insight into the less studied ERalpha isoforms, which mediate estrogen-dependent production and secretion of IGFs in vivo. First, Western blot studies revealed that three ERalpha isoforms were expressed in mouse fallopian tubes. Subsequent immunohistochemical analysis showed that ERalpha was detected in all cell types, whereas ERbeta was mainly localized in ciliated epithelial cells. Second, ERalpha isoform levels were dramatically downregulated in mouse fallopian tubes by treatment with E(2) or PPT, an ERalpha agonist, in a time-dependent manner. Third, the presence of ICI 182,780, an ER antagonist, blocked the E(2)- or PPT-induced downregulation of tubal ERalpha isoform expression in mice. However, alteration of ERalpha immunoreactivity following ICI 182,780 treatment was only detected in epithelial cells of the ampullary region. Fourth, changes in ERalpha isoform expression were found to be coupled to multiple E(2) effects on tubal growth, protein synthesis, and secretion in mouse fallopian tube tissues and fluid. In particular, E(2) exhibited positive regulation of IGF-I and IGF-II protein levels. Finally, using growth hormone receptor (GHR) gene-disrupted mice, we showed that regulation by E(2) of IGF production was independent of GH-induced GHR signaling in mouse fallopian tubes in vivo. These data, together with previous studies from our laboratory, suggest that the long-term effects of estrogen agonist promote IGF synthesis and secretion in mouse tubal epithelial cells and fallopian tube fluid via stimulation of ERalpha.
  •  
8.
  • Sjögren, Klara, 1970, et al. (författare)
  • Disproportional skeletal growth and markedly decreased bone mineral content in growth hormone receptor -/- mice.
  • 2000
  • Ingår i: Biochemical and biophysical research communications. - : Elsevier BV. - 0006-291X. ; 267:2, s. 603-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Growth hormone (GH) is important for skeletal growth as well as for a normal bone metabolism in adults. The skeletal growth and adult bone metabolism was studied in mice with an inactivated growth hormone receptor (GHR) gene. The lengths of femur, tibia, and crown-rump were, as expected, decreased in GHR-/- mice. Unexpectedly, GHR-/- mice displayed disproportional skeletal growth reflected by decreased femur/crown-rump and femur/tibia ratios. GHR-/- mice demonstrated decreased width of the growth plates in the long bones and disturbed ossification of the proximal tibial epiphysis. Furthermore, the area bone mineral density (BMD) as well as the bone mineral content (BMC)/body weight were markedly decreased in GHR-/- mice. The decrease in BMC in GHR-/- mice was not due to decreased trabecular volumetric BMD but to a decreased cross-sectional cortical bone area In conclusion, GHR-/- mice demonstrate disproportional skeletal growth and markedly decreased bone mineral content.
  •  
9.
  • Venken, Katrien, et al. (författare)
  • Growth without growth hormone receptor: estradiol is a major growth hormone-independent regulator of hepatic IGF-I synthesis.
  • 2005
  • Ingår i: Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research. - 0884-0431. ; 20:12, s. 2138-49
  • Tidskriftsartikel (refereegranskat)abstract
    • The role of estrogens in the regulation of pubertal growth independently of GH and its receptor was studied in male mice with disrupted GHRKO. E(2) rescued skeletal growth rates in GHRKO associated with an increase in hepatic and serum IGF-I. These data show that E(2) rescues pubertal growth during GH resistance through a novel mechanism of GHR-independent stimulation of hepatic IGF-I production. INTRODUCTION: Growth hormone (GH) and estrogen play a pivotal role in pubertal growth and bone mineral acquisition. Estrogens can affect GH secretion and thereby provide a GH-dependent mechanism for their effects on skeletal growth. It is presently unclear if or to what extent estrogens are able to regulate pubertal growth and bone mineral accrual independently of GH and its receptor. MATERIALS AND METHODS: Estradiol (E(2); 0.03 mug/day by subcutaneous silastic implants) was administered to orchidectomized (ORX) male mice with disrupted GHR (GHRKO) and corresponding WTs during late puberty (6-10 weeks). Longitudinal and radial bone growth, IGF-I in serum and its expression in liver, muscle, and bone, and liver gene expression were studied by histomorphometry, RIA, RT-PCR, microarrays, and Western blotting, respectively. RESULTS: E(2) stimulated not only longitudinal (femur length and growth plate thickness) and radial growth (cortical thickness and periosteal perimeter), but also rescued longitudinal and periosteal growth rates in ORX GHRKO, whereas no significant changes occurred in WT. E(2) thereby upregulated serum IGF-I and liver IGF-I synthesis (+21% and +52%, respectively) in ORX GHRKO, whereas IGF-I synthesis in femur or muscle was unaffected. Study of the underlying mechanism of the stimulation of hepatic IGF-I expression showed that E(2) restored downregulated receptor signaling systems, such as the estrogen receptor alpha and the prolactin receptor. E(2) thereby recovered the Janus kinase (JAK)/signal transducers and activators of transcription (STAT) pathway as evidenced by a significantly increased activation of the transcription factor STAT5 in ORX GHRKO. CONCLUSIONS: Our data show a stimulation of skeletal growth through upregulation of hepatic IGF-I by a hormone other than GH. E(2) rescues pubertal skeletal growth during GH resistance through a novel mechanism of GHR-independent stimulation of IGF-I synthesis in the liver.
  •  
10.
  • Venken, Katrien, et al. (författare)
  • Impact of androgens, growth hormone, and IGF-I on bone and muscle in male mice during puberty.
  • 2007
  • Ingår i: Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research. - : Wiley. - 0884-0431. ; 22:1, s. 72-82
  • Tidskriftsartikel (refereegranskat)abstract
    • The interaction between androgens and GH/IGF-I was studied in male GHR gene disrupted or GHRKO and WT mice during puberty. Androgens stimulate trabecular and cortical bone modeling and increase muscle mass even in the absence of a functional GHR. GHR activation seems to be the main determinant of radial bone expansion, although GH and androgens are both necessary for optimal stimulation of periosteal growth during puberty. INTRODUCTION: Growth hormone (GH) is considered to be a major regulator of postnatal skeletal growth, whereas androgens are considered to be a key regulator of male periosteal bone expansion. Moreover, both androgens and GH are essential for the increase in muscle mass during male puberty. Deficiency or resistance to either GH or androgens impairs bone modeling and decreases muscle mass. The aim of the study was to investigate androgen action on bone and muscle during puberty in the presence and absence of a functional GH/insulin-like growth factor (IGF)-I axis. MATERIALS AND METHODS: Dihydrotestosterone (DHT) or testosterone (T) were administered to orchidectomized (ORX) male GH receptor gene knockout (GHRKO) and corresponding wildtype (WT) mice during late puberty (6-10 weeks of age). Trabecular and cortical bone modeling, cortical strength, body composition, IGF-I in serum, and its expression in liver, muscle, and bone were studied by histomorphometry, pQCT, DXA, radioimmunoassay and RT-PCR, respectively. RESULTS: GH receptor (GHR) inactivation and low serum IGF-I did not affect trabecular bone modeling, because trabecular BMD, bone volume, number, width, and bone turnover were similar in GHRKO and WT mice. The normal trabecular phenotype in GHRKO mice was paralleled by a normal expression of skeletal IGF-I mRNA. ORX decreased trabecular bone volume significantly and to a similar extent in GHRKO and WT mice, whereas DHT and T administration fully prevented trabecular bone loss. Moreover, DHT and T stimulated periosteal bone formation, not only in WT (+100% and +100%, respectively, versus ORX + vehicle [V]; p < 0.05), but also in GHRKO mice (+58% and +89%, respectively, versus ORX + V; p < 0.05), initially characterized by very low periosteal growth. This stimulatory action on periosteal bone resulted in an increase in cortical thickness and occurred without any treatment effect on serum IGF-I or skeletal IGF-I expression. GHRKO mice also had reduced lean body mass and quadriceps muscle weight, along with significantly decreased IGF-I mRNA expression in quadriceps muscle. DHT and T equally stimulated muscle mass in GHRKO and WT mice, without any effect on muscle IGF-I expression. CONCLUSIONS: Androgens stimulate trabecular and cortical bone modeling and increase muscle weight independently from either systemic or local IGF-I production. GHR activation seems to be the main determinant of radial bone expansion, although GHR signaling and androgens are both necessary for optimal stimulation of periosteal growth during puberty.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10
Typ av publikation
tidskriftsartikel (8)
konferensbidrag (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (9)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Kopchick, John J (9)
Ohlsson, Claes, 1965 (3)
Johannsson, Gudmundu ... (3)
Boonen, Steven (2)
Vanderschueren, Dirk (2)
Juul, Anders (2)
visa fler...
Movérare-Skrtic, Sof ... (2)
Bidlingmaier, Martin (2)
Christiansen, Jens S ... (2)
Cohen, Pinchas (2)
Hoffman, Andrew R (2)
Radovick, Sally (2)
Bergström, Göran, 19 ... (1)
Hellström, Ann, 1959 (1)
Bang, Peter (1)
Hofman, Paul L. (1)
Fernandez-Rodriguez, ... (1)
Dickson, Suzanne L., ... (1)
Olsson, Bob, 1969 (1)
Svensson, Lennart (1)
Burman, Pia (1)
Olsson, Daniel S, 19 ... (1)
Sävendahl, Lars (1)
Dahlgren, Jovanna, 1 ... (1)
Kriström, Berit (1)
Savendahl, Lars (1)
Chihara, K. (1)
Allen, David B (1)
Backeljauw, Philippe (1)
Biller, Beverly (1)
Boguszewski, Margare ... (1)
Butler, Gary (1)
Cianfarani, Stefano (1)
Clayton, Peter E (1)
Clemmons, David (1)
Darendeliler, Feyza (1)
Deal, Cheri (1)
Dunger, David P (1)
Erfurth, Eva Marie (1)
Fuqua, John (1)
Grimberg, Adda (1)
Haymond, Morey (1)
Higham, Claire (1)
Ho, Ken K Y (1)
Hokken-Koelega, Anit ... (1)
Johannsson, Gudmundu ... (1)
Lee, Peter (1)
Pollak, Michael (1)
Robison, Leslie (1)
Rosenfeld, Ron (1)
visa färre...
Lärosäte
Göteborgs universitet (8)
Umeå universitet (1)
Lunds universitet (1)
Chalmers tekniska högskola (1)
Språk
Engelska (10)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (6)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy