SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kovács Anikó 1961) ;pers:(Danielsson Anna 1973)"

Sökning: WFRF:(Kovács Anikó 1961) > Danielsson Anna 1973

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Biermann, Jana, et al. (författare)
  • Clonal relatedness in tumour pairs of breast cancer patients.
  • 2018
  • Ingår i: Breast cancer research : BCR. - : Springer Science and Business Media LLC. - 1465-542X. ; 20:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecular classification of tumour clonality is currently not evaluated in multiple invasive breast carcinomas, despite evidence suggesting common clonal origins. There is no consensus about which type of data (e.g. copy number, mutation, histology) and especially which statistical method is most suitable to distinguish clonal recurrences from independent primary tumours.Thirty-seven invasive breast tumour pairs were stratified according to laterality and time interval between the diagnoses of the two tumours. In a multi-omics approach, tumour clonality was analysed by integrating clinical characteristics (n=37), DNA copy number (n=37), DNA methylation (n=8), gene expression microarray (n=7), RNA sequencing (n=3), and SNP genotyping data (n=3). Different statistical methods, e.g. the diagnostic similarity index (SI), were used to classify the tumours as clonally related recurrences or independent primary tumours.The SI and hierarchical clustering showed similar tendencies and the highest concordance with the other methods. Concordant evidence for tumour clonality was found in 46% (17/37) of patients. Notably, no association was found between the current clinical guidelines and molecular tumour features.A more accurate classification of clonal relatedness between multiple breast tumours may help to mitigate treatment failure and relapse by integrating tumour-associated molecular features, clinical parameters, and statistical methods. Guidelines need to be defined with exact thresholds to standardise clonality testing in a routine diagnostic setting.
  •  
2.
  • Biermann, Jana, et al. (författare)
  • Tumour clonality in paired invasive breast carcinomas
  • 2019
  • Ingår i: Cancer Research. - 0008-5472.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Background: Multiple invasive breast tumours may represent either independent primary tumours or clonal recurrences of the first tumour, where the same progenitor cell gives rise to all of the detected tumours. Consequently, the driver events for the progenitor cell need to have been identical in early tumour development. Molecular classification of tumour clonality is not currently evaluated in multiple invasive breast carcinomas, despite evidence suggesting common clonal origins. Furthermore, there is no consensus about which type of biological data (e.g. copy number, mutation, histology) and especially which statistical method is most suitable to distinguish clonal recurrences from independent primary tumours. Methods: Thirty-seven invasive breast tumour pairs were stratified by laterality (bilateral vs. ipsilateral) and the time interval between the diagnoses of the first and second tumours (synchronous vs. metachronous). Both tumours from the same patient were analysed by integrating clinical characteristics (n = 37), DNA copy number (n = 37), DNA methylation (n = 8), gene expression microarray (n = 7), RNA sequencing (n = 3), and SNP genotyping data (n = 3). Different statistical methods, e.g. the diagnostic similarity index (SI), distance measure, shared segment analysis etc., were used to classify the tumours from the same patient as clonally related recurrences or independent primary tumours. Results: The SI applied on DNA copy numbers derived from aCGH (array comparative genomic hybridization) data was determined as the strongest indicator of clonal relatedness as it showed the highest concordance with all other methods. The distance measure was the most conservative method and the shared segment analysis most liberal. Concordant evidence for tumour clonality was found in 46% (17/37) of the patients. Notably, no significant association was found between the clinical characteristics and molecular tumour features. Conclusions: A more accurate classification of clonal relatedness between multiple breast tumours may help to mitigate treatment failure and relapse by integrating tumour-associated molecular features, clinical parameters, and statistical methods. In cases of extremely similar or different tumour pairs, the results showed consistency regardless of the method used. The SI can be easily integrated into clinical routine using FFPE samples to obtain copy number data. However, clinical guidelines with exact thresholds need to be defined to standardize clonality testing in a routine diagnostic setting.
  •  
3.
  •  
4.
  • Kimbung, Siker, et al. (författare)
  • Contrasting breast cancer molecular subtypes across serial tumor progression stages: biological and prognostic implications.
  • 2015
  • Ingår i: Oncotarget. - : Impact Journals, LLC. - 1949-2553. ; 6:32, s. 33306-18
  • Tidskriftsartikel (refereegranskat)abstract
    • The relevance of the intrinsic subtypes for clinical management of metastatic breast cancer is not comprehensively established. We aimed to evaluate the prevalence and prognostic significance of drifts in tumor molecular subtypes during breast cancer progression. A well-annotated cohort of 304 women with advanced breast cancer was studied. Tissue microarrays of primary tumors and synchronous lymph node metastases were constructed. Conventional biomarkers were centrally assessed and molecular subtypes were assigned following the 2013 St Gallen guidelines. Fine-needle aspirates of asynchronous metastases were transcriptionally profiled and subtyped using PAM50. Discordant expression of individual biomarkers and molecular subtypes was observed during tumor progression. Primary luminal-like tumors were relatively unstable, frequently adopting a more aggressive subtype in the metastases. Notably, loss of ER expression and a luminal to non-luminal subtype conversion was associated with an inferior post-recurrence survival. In addition, ER and molecular subtype assessed at all tumor progression stages were independent prognostic factors for post-recurrence breast cancer mortality in multivariable analyses. Our results demonstrate that drifts in tumor molecular subtypes may occur during tumor progression, conferring adverse consequences on outcome following breast cancer relapse.
  •  
5.
  • Möllerström, Elin, et al. (författare)
  • Up-regulation of cell cycle arrest protein BTG2 correlates with increased overall survival in breast cancer, as detected by immunohistochemistry using tissue microarray.
  • 2010
  • Ingår i: BMC cancer. - : Springer Science and Business Media LLC. - 1471-2407. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • ABSTRACT: BACKGROUND: Previous studies have shown that the ADIPOR1, ADORA1, BTG2 and CD46 genes differ significantly between long-term survivors of breast cancer and deceased patients, both in levels of gene expression and DNA copy numbers. The aim of this study was to characterize the expression of the corresponding proteins in breast carcinoma and to determine their correlation with clinical outcome. METHODS: Protein expression was evaluated using immunohistochemistry in an independent breast cancer cohort of 144 samples represented on tissue microarrays. Fisher's exact test was used to analyze the differences in protein expression between dead and alive patients. We used Cox-regression multivariate analysis to assess whether the new markers predict the survival status of the patients better than the currently used markers. RESULTS: BTG2 expression was demonstrated in a significantly lower proportion of samples from dead patients compared to alive patients, both in overall expression (P=0.026) and cell membrane specific expression (P=0.013), whereas neither ADIPOR1, ADORA1 nor CD46 showed differential expression in the two survival groups. Furthermore, a multivariate analysis showed that a model containing BTG2 expression in combination with HER2 and Ki67 expression along with patient age performed better than a model containing the currently used prognostic markers (tumour size, nodal status, HER2 expression, hormone receptor status, histological grade, and patient age). Interestingly, BTG2 has previously been described as a tumour suppressor gene involved in cell cycle arrest and p53 signalling. CONCLUSIONS: We conclude that high-level BTG2 protein expression correlates with prolonged survival in patients with breast carcinoma.
  •  
6.
  • Parris, Toshima Z, 1978, et al. (författare)
  • Clinical implications of gene dosage and gene expression patterns in diploid breast carcinoma.
  • 2010
  • Ingår i: Clinical cancer research : an official journal of the American Association for Cancer Research. - 1078-0432. ; 16:15, s. 3860-74
  • Tidskriftsartikel (refereegranskat)abstract
    • Deregulation of key cellular pathways is fundamental for the survival and expansion of neoplastic cells. In cancer, regulation of gene transcription can be mediated in a variety of ways. The purpose of this study was to assess the impact of gene dosage on gene expression patterns and the effect of other mechanisms on transcriptional levels, and to associate these genomic changes with clinicopathologic parameters.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy