SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kovacs GG) "

Search: WFRF:(Kovacs GG)

  • Result 1-10 of 25
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Ruilope, LM, et al. (author)
  • Design and Baseline Characteristics of the Finerenone in Reducing Cardiovascular Mortality and Morbidity in Diabetic Kidney Disease Trial
  • 2019
  • In: American journal of nephrology. - : S. Karger AG. - 1421-9670 .- 0250-8095. ; 50:5, s. 345-356
  • Journal article (peer-reviewed)abstract
    • <b><i>Background:</i></b> Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. <b><i>Patients and</i></b> <b><i>Methods:</i></b> The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate ≥25 mL/min/1.73 m<sup>2</sup> and albuminuria (urinary albumin-to-creatinine ratio ≥30 to ≤5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level α = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. <b><i>Conclusions:</i></b> FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049.
  •  
3.
  • Zhang, M. -D, et al. (author)
  • Comparative anatomical distribution of neuronal calcium-binding protein (NECAB) 1 and -2 in rodent and human spinal cord
  • 2016
  • In: Brain Structure and Function. - : Springer. - 1863-2653 .- 1863-2661. ; , s. 1-21
  • Journal article (peer-reviewed)abstract
    • Neuronal calcium-binding protein 1 and -2 (NECAB1/2) localize to multiple excitatory neuron populations in the mouse spinal cord. Here, we analyzed rat and human spinal cord, combining in situ hybridization and immunohistochemistry, complementing newly collated data on mouse spinal cord for direct comparisons. Necab1/2 mRNA transcripts showed complementary distribution in rodent’s spinal cord. Multiple-labeling fluorescence histochemistry with neuronal phenotypic markers localized NECAB1 to a dense fiber plexus in the dorsal horn, to neurons mainly in superficial layers and to commissural interneurons in both rodent species. NECAB1-positive (+) motor neurons were only found in mice. NECAB1 distribution in the human spinal cord was similar with the addition of NECAB1-like immunoreactivity surrounding myelinated axons. NECAB2 was mainly present in excitatory synaptic boutons in the dorsal horn of all three species, and often in calbindin-D28k+ neuronal somata. Rodent ependymal cells expressed calbindin-D28k. In humans, they instead were NECAB2+ and/or calretinin+. Our results reveal that the association of NECAB2 to excitatory neuronal circuits in the spinal cord is evolutionarily conserved across the mammalian species investigated so far. In contrast, NECAB1 expression is more heterogeneous. Thus, our study suggests that the phenotypic segregation of NECAB1 and -2 to respective excitatory and inhibitory spinal systems can underpin functional modalities in determining the fidelity of synaptic neurotransmission and neuronal responsiveness, and might bear translational relevance to humans.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 25

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view