SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kovacs Laszlo) ;mspu:(conferencepaper)"

Sökning: WFRF:(Kovacs Laszlo) > Konferensbidrag

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Kovács, György, 1984-, et al. (författare)
  • Examining the Combination of Multi-Band Processing and Channel Dropout for Robust Speech Recognition
  • 2019
  • Ingår i: Proc. Interspeech 2019. - : The International Speech Communication Association (ISCA). ; , s. 421-425
  • Konferensbidrag (refereegranskat)abstract
    • A pivotal question in Automatic Speech Recognition (ASR) is the robustness of the trained models. In this study, we investigate the combination of two methods commonly applied to increase the robustness of ASR systems. On the one hand, inspired by auditory experiments and signal processing considerations, multi-band band processing has been used for decades to improve the noise robustness of speech recognition. On the other hand, dropout is a commonly used regularization technique to prevent overfitting by keeping the model from becoming over-reliant on a small set of neurons. We hypothesize that the careful combination of the two approaches would lead to increased robustness, by preventing the resulting model from over-rely on any given band.To verify our hypothesis, we investigate various approaches for the combination of the two methods using the Aurora-4 corpus. The results obtained corroborate our initial assumption, and show that the proper combination of the two techniques leads to increased robustness, and to significantly lower word error rates (WERs). Furthermore, we find that the accuracy scores attained here compare favourably to those reported recently on the clean training scenario of the Aurora-4 corpus.
  •  
3.
  • Major, B., et al. (författare)
  • Investigation of high harmonic generation using a high-power, 5-fs laser in a loose-focusing geometry
  • 2017
  • Ingår i: 2017 Conference on Lasers and Electro-Optics Europe &  European Quantum Electronics Conference (CLEO/Europe-EQEC). - : IEEE. - 9781509067367
  • Konferensbidrag (refereegranskat)abstract
    • Summary form only given. Since its first observation almost three decades ago high-order harmonic generation (HHG) in gases became a reliable source of extreme ultraviolet (XUV) pulses, which gave the possibility to study electronic processes on their natural timescale [1, 2]. While the main building blocks of the experimental setups for gas HHG are the same in almost all cases, the focusing or medium geometry varies from realization to realization based on, for example, the available laser power [3, 4].In this work we study HHG in a loose focusing geometry by focusing a ~50-mm diameter (FWHM) beam with a mirror of 16-m focal length (f-number ~320). The main subject of this analysis is to compare low pressure - long interaction length (few millibars and tens of centimeters) with high pressure - short medium (hundreds of millibars and a few millimeters) scenarios and understand the underlying reasons for the observed XUV radiation parameters. The experiments are carried out with on target 35 mJ, sub-5 fs, 740 nm central wavelength pulses provided by an optical parametric synthesizer [5], producing high-energy pulses at the 100 eV spectral region [6]. The theoretical analysis is performed by simulation code based on a three-dimensional nonadiabatic model [7,8]. The good agreement between the experimental and simulation data (see Fig. 1) allows us to use the theoretical findings to gain better insight on the exact phase-matching processes providing the observed features. This detailed description is used to draw general conclusions of the high-harmonic generation process.
  •  
4.
  •  
5.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy