Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Krause Diana N.) "

Sökning: WFRF:(Krause Diana N.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
  • Ahnstedt, Hilda, et al. (författare)
  • Male-female differences in upregulation of vasoconstrictor responses in human cerebral arteries.
  • 2013
  • Ingår i: PLoS ONE. - : Public Library of Science. - 1932-6203. ; 8:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Male-female differences may significantly impact stroke prevention and treatment in men and women, however underlying mechanisms for sexual dimorphism in stroke are not understood. We previously found in males that cerebral ischemia upregulates contractile receptors in cerebral arteries, which is associated with lower blood flow. The present study investigates if cerebral arteries from men and women differ in cerebrovascular receptor upregulation.
  • Ahnstedt, Hilda, et al. (författare)
  • U0126 attenuates cerebral vasoconstriction and improves long-term neurologic outcome after stroke in female rats.
  • 2015
  • Ingår i: Journal of Cerebral Blood Flow and Metabolism. - : Nature Publishing Group. - 1559-7016. ; 35:3, s. 454-460
  • Tidskriftsartikel (refereegranskat)abstract
    • Sex differences are well known in cerebral ischemia and may impact the effect of stroke treatments. In male rats, the MEK1/2 inhibitor U0126 reduces ischemia-induced endothelin type B (ETB) receptor upregulation, infarct size and improves acute neurologic function after experimental stroke. However, responses to this treatment in females and long-term effects on outcome are not known. Initial experiments used in vitro organ culture of cerebral arteries, confirming ERK1/2 activation and increased ETB receptor-mediated vasoconstriction in female cerebral arteries. Transient middle cerebral artery occlusion (tMCAO, 120 minutes) was induced in female Wistar rats, with U0126 (30 mg/kg intraperitoneally) or vehicle administered at 0 and 24 hours of reperfusion, or with no treatment. Infarct volumes were determined and neurologic function was assessed by 6-point and 28-point neuroscores. ETB receptor-mediated contraction was studied with myograph and protein expression with immunohistochemistry. In vitro organ culture and tMCAO resulted in vascular ETB receptor upregulation and activation of ERK1/2 that was prevented by U0126. Although no effect on infarct size, U0126 improved the long-term neurologic function after experimental stroke in female rats. In conclusion, early prevention of the ERK1/2 activation and ETB receptor-mediated vasoconstriction in the cerebral vasculature after ischemic stroke in female rats improves the long-term neurologic outcome.Journal of Cerebral Blood Flow & Metabolism advance online publication, 10 December 2014; doi:10.1038/jcbfm.2014.217.
  • Edvinsson, Jacob C.A., et al. (författare)
  • C-fibers may modulate adjacent Aδ-fibers through axon-axon CGRP signaling at nodes of Ranvier in the trigeminal system
  • Ingår i: The journal of headache and pain. - : Springer. - 1129-2369. ; 20:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Monoclonal antibodies (mAbs) towards CGRP or the CGRP receptor show good prophylactic antimigraine efficacy. However, their site of action is still elusive. Due to lack of passage of mAbs across the blood-brain barrier the trigeminal system has been suggested a possible site of action because it lacks blood-brain barrier and hence is available to circulating molecules. The trigeminal ganglion (TG) harbors two types of neurons; half of which store CGRP and the rest that express CGRP receptor elements (CLR/RAMP1). METHODS: With specific immunohistochemistry methods, we demonstrated the localization of CGRP, CLR, RAMP1, and their locations related to expression of the paranodal marker contactin-associated protein 1 (CASPR). Furthermore, we studied functional CGRP release separately from the neuron soma and the part with only nerve fibers of the trigeminal ganglion, using an enzyme-linked immunosorbent assay. RESULTS: Antibodies towards CGRP and CLR/RAMP1 bind to two different populations of neurons in the TG and are found in the C- and the myelinated Aδ-fibers, respectively, within the dura mater and in trigeminal ganglion (TG). CASPR staining revealed paranodal areas of the different myelinated fibers inhabiting the TG and dura mater. Double immunostaining with CASPR and RAMP1 or the functional CGRP receptor antibody (AA58) revealed co-localization of the two peptides in the paranodal region which suggests the presence of the CGRP-receptor. Double immunostaining with CGRP and CASPR revealed that thin C-fibers have CGRP-positive boutons which often localize in close proximity to the nodal areas of the CGRP-receptor positive Aδ-fibers. These boutons are pearl-like synaptic structures, and we show CGRP release from fibers dissociated from their neuronal bodies. In addition, we found that adjacent to the CGRP receptor localization in the node of Ranvier there was PKA immunoreactivity (kinase stimulated by cAMP), providing structural possibility to modify conduction activity within the Aδ-fibers. CONCLUSION: We observed a close relationship between the CGRP containing C-fibers and the Aδ-fibers containing the CGRP-receptor elements, suggesting a point of axon-axon interaction for the released CGRP and a site of action for gepants and the novel mAbs to alleviate migraine.
  • Edvinsson, Lars, et al. (författare)
  • CGRP as the target of new migraine therapies — successful translation from bench to clinic
  • 2018
  • Ingår i: Nature Reviews Neurology. - : Nature Publishing Group. - 1759-4758. ; 14:6, s. 338-350
  • Tidskriftsartikel (refereegranskat)abstract
    • Treatment of migraine is on the cusp of a new era with the development of drugs that target the trigeminal sensory neuropeptide calcitonin gene-related peptide (CGRP) or its receptor. Several of these drugs are expected to receive approval for use in migraine headache in 2018 and 2019. CGRP-related therapies offer considerable improvements over existing drugs as they are the first to be designed specifically to act on the trigeminal pain system, they are more specific and they seem to have few or no adverse effects. CGRP receptor antagonists such as ubrogepant are effective for acute relief of migraine headache, whereas monoclonal antibodies against CGRP (eptinezumab, fremanezumab and galcanezumab) or the CGRP receptor (erenumab) effectively prevent migraine attacks. As these drugs come into clinical use, we provide an overview of knowledge that has led to successful development of these drugs. We describe the biology of CGRP signalling, summarize key clinical evidence for the role of CGRP in migraine headache, including the efficacy of CGRP-targeted treatment, and synthesize what is known about the role of CGRP in the trigeminovascular system. Finally, we consider how the latest findings provide new insight into the central role of the trigeminal ganglion in the pathophysiology of migraine.
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy