SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kreisinger J) "

Search: WFRF:(Kreisinger J)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Söderquist, Pär, et al. (author)
  • Admixture between released and wild game birds: a changing genetic landscape in European mallards (Anas platyrhynchos)
  • 2017
  • In: European Biophysics Journal. - : Springer Verlag (Germany). - 0175-7571 .- 1432-1017. ; 63
  • Journal article (peer-reviewed)abstract
    • Disruption of naturally evolved spatial patterns of genetic variation and local adaptations is a growing concern in wildlife management and conservation. During the last decade, releases of native taxa with potentially non-native genotypes have received increased attention. This has mostly concerned conservation programs, but releases are also widely carried out to boost harvest opportunities. The mallard, Anas platyrhynchos, is one of few terrestrial migratory vertebrates subjected to large-scale releases for hunting purposes. It is the most numerous and widespread duck in the world, yet each year more than three million farmed mallard ducklings are released into the wild in the European Union alone to increase the harvestable population. This study aimed to determine the genetic effects of such large-scale releases of a native species, specifically if wild and released farmed mallards differ genetically among subpopulations in Europe, if there are signs of admixture between the two groups, if the genetic structure of the wild mallard population has changed since large-scale releases began in the 1970s, and if the current data matches global patterns across the Northern hemisphere. We used Bayesian clustering (Structure software) and Discriminant Analysis of Principal Components (DAPC) to analyze the genetic structure of historical and present-day wild (n = 171 and n = 209, respectively) as well as farmed (n = 211) mallards from six European countries as inferred by 360 single-nucleotide polymorphisms (SNPs). Both methods showed a clear genetic differentiation between wild and farmed mallards. Admixed individuals were found in the present-day wild population, implicating introgression of farmed genotypes into wild mallards despite low survival among released farmed mallards. Such cryptic introgression would alter the genetic composition of wild populations and may have unknown long-term consequences for conservation.
  •  
2.
  • Söderquist, Pär, et al. (author)
  • Admixture between released and wild game birds: a changing genetic landscape in European mallards (Anas platyrhynchos)
  • 2017
  • In: European Biophysics Journal. - : Springer Verlag. - 0175-7571 .- 1432-1017. ; 63:6
  • Journal article (peer-reviewed)abstract
    • Disruption of naturally evolved spatial patterns of genetic variation and local adaptations is a growing concern in wildlife management and conservation. During the last decade, releases of native taxa with potentially non-native genotypes have received increased attention. This has mostly concerned conservation programs, but releases are also widely carried out to boost harvest opportunities. The mallard, Anas platyrhynchos, is one of few terrestrial migratory vertebrates subjected to large-scale releases for hunting purposes. It is the most numerous and widespread duck in the world, yet each year more than three million farmed mallard ducklings are released into the wild in the European Union alone to increase the harvestable population. This study aimed to determine the genetic effects of such large-scale releases of a native species, specifically if wild and released farmed mallards differ genetically among subpopulations in Europe, if there are signs of admixture between the two groups, if the genetic structure of the wild mallard population has changed since large-scale releases began in the 1970s, and if the current data matches global patterns across the Northern hemisphere. We used Bayesian clustering (Structure software) and Discriminant Analysis of Principal Components (DAPC) to analyze the genetic structure of historical and present-day wild (n = 171 and n = 209, respectively) as well as farmed (n = 211) mallards from six European countries as inferred by 360 single-nucleotide polymorphisms (SNPs). Both methods showed a clear genetic differentiation between wild and farmed mallards. Admixed individuals were found in the present-day wild population, implicating introgression of farmed genotypes into wild mallards despite low survival among released farmed mallards. Such cryptic introgression would alter the genetic composition of wild populations and may have unknown long-term consequences for conservation.
  •  
3.
  • Champagnon, Jocelyn, et al. (author)
  • Assessing the genetic impact of massive restocking on wild mallard
  • 2013
  • In: Animal Conservation. - : Wiley: 12 months. - 1367-9430 .- 1469-1795. ; 16:3, s. 295-305
  • Journal article (peer-reviewed)abstract
    • Captive-bred mallards Anas platyrhynchos have been released for hunting purposes at a very large scale in Europe since the mid-1970s. In spite of a potential genetic impact, the actual contribution of restocked mallards to the genome of the target population has received little attention. The genetic structure of modern wild mallards in the Camargue, Southern France, was assessed from two samples: one originating from shot birds in hunting bags and one from presumed wild ducks captured alive in a hunting-free reserve. Reference samples originated from five mallard farms, as well as from museum samples collected before the mid-1970s (i.e. before massive mallard releases started). Our results revealed that the genetic signature of wild wintering mallards has not changed significantly because museum and presumed wild samples from the Camargue hunting-free nature reserve were genetically similar, and clearly differentiated from the farm mallards. This suggests that mallard releases in the Camargue or elsewhere in France, although massive, have not actually translated into complete admixture of wild and captive genomes, most likely due to low survival of released birds once in the wild. Nevertheless, although genetic introgression of the wild population by captive-bred was contained, we found significant rates of hybridization between wild and captive-bred mallards in modern samples. This result suggests that long-term releases of captive-bred mallards, if carried on at such large scale, could compromise irreversibly the genetic structure and composition of European mallards. This work contributes to fill in the gap on the monitoring of the genetic consequences of large-scale game releases for exploitation.
  •  
4.
  • Champagnon, Jocelyn, et al. (author)
  • Assessing the genetic impact of massive restocking on wild mallard
  • 2013
  • In: Animal Conservation. - : Wiley-Blackwell. - 1367-9430 .- 1469-1795. ; 16:3, s. 295-305
  • Journal article (peer-reviewed)abstract
    • Captive-bred mallards Anas platyrhynchos have been released for hunting purposes at a very large scale in Europe since the mid-1970s. In spite of a potential genetic impact, the actual contribution of restocked mallards to the genome of the target population has received little attention. The genetic structure of modern wild mallards in the Camargue, Southern France, was assessed from two samples: one originating from shot birds in hunting bags and one from presumed wild ducks captured alive in a hunting-free reserve. Reference samples originated from five mallard farms, as well as from museum samples collected before the mid-1970s (i.e. before massive mallard releases started). Our results revealed that the genetic signature of wild wintering mallards has not changed significantly because museum and presumed wild samples from the Camargue hunting-free nature reserve were genetically similar, and clearly differentiated from the farm mallards. This suggests that mallard releases in the Camargue or elsewhere inFrance, although massive, have not actually translated into complete admixture of wild and captive genomes, most likely due to low survival of released birds once in the wild. Nevertheless, although genetic introgression of the wild population by captive-bred was contained, we found significant rates of hybridization between wild and captive-bred mallards in modern samples. This result suggests that long-term releases of captive-bred mallards, if carried on at such large scale, could compromise irreversibly the genetic structure and composition of European mallards. This work contributes to fill in the gap on the monitoring of the genetic consequences of large-scale game releases for exploitation.
  •  
5.
  •  
6.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view