SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Krischer Jeffrey P) "

Sökning: WFRF:(Krischer Jeffrey P)

  • Resultat 1-10 av 57
  • [1]23456Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Knip, Mikael, et al. (författare)
  • Effect of Hydrolyzed Infant Formula vs Conventional Formula on Risk of Type 1 Diabetes The TRIGR Randomized Clinical Trial
  • 2018
  • Ingår i: Journal of the American Medical Association (JAMA). - : AMER MEDICAL ASSOC. - 0098-7484 .- 1538-3598. ; 319:1, s. 38-48
  • Tidskriftsartikel (refereegranskat)abstract
    • IMPORTANCE Early exposure to complex dietary proteins may increase the risk of type 1 diabetes in children with genetic disease susceptibility. There are no intact proteins in extensively hydrolyzed formulas. OBJECTIVE To test the hypothesis that weaning to an extensively hydrolyzed formula decreases the cumulative incidence of type 1 diabetes in young children. DESIGN, SETTING, AND PARTICIPANTS An international double-blind randomized clinical trial of 2159 infants with human leukocyte antigen-conferred disease susceptibility and a first-degree relative with type 1 diabetes recruited from May 2002 to January 2007 in 78 study centers in 15 countries; 1081 were randomized to be weaned to the extensively hydrolyzed casein formula and 1078 to a conventional formula. The follow-up of the participants ended on February 28, 2017. INTERVENTIONS The participants received either a casein hydrolysate or a conventional adapted cows milk formula supplemented with 20% of the casein hydrolysate. The minimum duration of study formula exposure was 60 days by 6 to 8 months of age. MAIN OUTCOMES AND MEASURES Primary outcome was type 1 diabetes diagnosed according to World Health Organization criteria. Secondary outcomes included age at diabetes diagnosis and safety (adverse events). RESULTS Among 2159 newborn infants (1021 female [47.3%]) who were randomized, 1744 (80.8%) completed the trial. The participants were observed for a median of 11.5 years (quartile [Q] 1-Q3, 10.2-12.8). The absolute risk of type 1 diabetes was 8.4% among those randomized to the casein hydrolysate (n = 91) vs 7.6% among those randomized to the conventional formula (n = 82) (difference, 0.8%[95% CI, -1.6% to 3.2%]). The hazard ratio for type 1 diabetes adjusted for human leukocyte antigen risk group, duration of breastfeeding, duration of study formula consumption, sex, and region while treating study center as a random effect was 1.1 (95% CI, 0.8 to 1.5; P = .46). The median age at diagnosis of type 1 diabetes was similar in the 2 groups (6.0 years [Q1-Q3, 3.1-8.9] vs 5.8 years [Q1-Q3, 2.6-9.1]; difference, 0.2 years [95% CI, -0.9 to 1.2]). Upper respiratory infections were the most common adverse event reported (frequency, 0.48 events/year in the hydrolysate group and 0.50 events/year in the control group). CONCLUSIONS AND RELEVANCE Among infants at risk for type 1 diabetes, weaning to a hydrolyzed formula compared with a conventional formula did not reduce the cumulative incidence of type 1 diabetes after median follow-up for 11.5 years. These findings do not support a need to revise the dietary recommendations for infants at risk for type 1 diabetes.
  •  
2.
  • Knip, Mikael, et al. (författare)
  • Hydrolyzed infant formula and early β-cell autoimmunity : a randomized clinical trial.
  • 2014
  • Ingår i: Journal of the American Medical Association (JAMA). - 0098-7484 .- 1538-3598. ; 311:22, s. 2279-2287
  • Tidskriftsartikel (refereegranskat)abstract
    • IMPORTANCE: The disease process leading to clinical type 1 diabetes often starts during the first years of life. Early exposure to complex dietary proteins may increase the risk of β-cell autoimmunity in children at genetic risk for type 1 diabetes. Extensively hydrolyzed formulas do not contain intact proteins.OBJECTIVE: To test the hypothesis that weaning to an extensively hydrolyzed formula decreases the cumulative incidence of diabetes-associated autoantibodies in young children.DESIGN, SETTING, AND PARTICIPANTS: A double-blind randomized clinical trial of 2159 infants with HLA-conferred disease susceptibility and a first-degree relative with type 1 diabetes recruited from May 2002 to January 2007 in 78 study centers in 15 countries; 1078 were randomized to be weaned to the extensively hydrolyzed casein formula and 1081 were randomized to be weaned to a conventional cows' milk-based formula. The participants were observed to April 16, 2013.INTERVENTIONS: The participants received either a casein hydrolysate or a conventional cows' milk formula supplemented with 20% of the casein hydrolysate.MAIN OUTCOMES: AND MEASURES: Primary outcome was positivity for at least 2 diabetes-associated autoantibodies out of 4 analyzed. Autoantibodies to insulin, glutamic acid decarboxylase, and the insulinoma-associated-2 (IA-2) molecule were analyzed using radiobinding assays and islet cell antibodies with immunofluorescence during a median observation period of 7.0 years (mean, 6.3 years).RESULTS: The absolute risk of positivity for 2 or more islet autoantibodies was 13.4% among those randomized to the casein hydrolysate formula (n = 139) vs 11.4% among those randomized to the conventional formula (n = 117). The unadjusted hazard ratio for positivity for 2 or more autoantibodies among those randomized to be weaned to the casein hydrolysate was 1.21 (95% CI, 0.94-1.54), compared with those randomized to the conventional formula, while the hazard ratio adjusted for HLA risk, duration of breastfeeding, vitamin D use, study formula duration and consumption, and region was 1.23 (95% CI, 0.96-1.58). There were no clinically significant differences in the rate of reported adverse events between the 2 groups.CONCLUSIONS AND RELEVANCE: Among infants at risk for type 1 diabetes, the use of a hydrolyzed formula, when compared with a conventional formula, did not reduce the incidence of diabetes-associated autoantibodies after 7 years. These findings do not support a benefit from hydrolyzed formula. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00179777.
  •  
3.
  • Stewart, Christopher J., et al. (författare)
  • Temporal development of the gut microbiome in early childhood from the TEDDY study
  • 2018
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836. ; 562:7728, s. 583-588
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of the microbiome from infancy to childhood is dependent on a range of factors, with microbial–immune crosstalk during this time thought to be involved in the pathobiology of later life diseases1–9 such as persistent islet autoimmunity and type 1 diabetes10–12. However, to our knowledge, no studies have performed extensive characterization of the microbiome in early life in a large, multi-centre population. Here we analyse longitudinal stool samples from 903 children between 3 and 46 months of age by 16S rRNA gene sequencing (n = 12,005) and metagenomic sequencing (n = 10,867), as part of the The Environmental Determinants of Diabetes in the Young (TEDDY) study. We show that the developing gut microbiome undergoes three distinct phases of microbiome progression: a developmental phase (months 3–14), a transitional phase (months 15–30), and a stable phase (months 31–46). Receipt of breast milk, either exclusive or partial, was the most significant factor associated with the microbiome structure. Breastfeeding was associated with higher levels of Bifidobacterium species (B. breve and B. bifidum), and the cessation of breast milk resulted in faster maturation of the gut microbiome, as marked by the phylum Firmicutes. Birth mode was also significantly associated with the microbiome during the developmental phase, driven by higher levels of Bacteroides species (particularly B. fragilis) in infants delivered vaginally. Bacteroides was also associated with increased gut diversity and faster maturation, regardless of the birth mode. Environmental factors including geographical location and household exposures (such as siblings and furry pets) also represented important covariates. A nested case–control analysis revealed subtle associations between microbial taxonomy and the development of islet autoimmunity or type 1 diabetes. These data determine the structural and functional assembly of the microbiome in early life and provide a foundation for targeted mechanistic investigation into the consequences of microbial–immune crosstalk for long-term health.
  •  
4.
  • Andrén Aronsson, Carin, et al. (författare)
  • Association of gluten intake during the first 5 years of life with incidence of celiac disease autoimmunity and celiac disease among children at increased risk
  • 2019
  • Ingår i: JAMA - Journal of the American Medical Association. - : American Medical Association. - 0098-7484. ; 322:6, s. 514-523
  • Tidskriftsartikel (refereegranskat)abstract
    • Importance: High gluten intake during childhood may confer risk of celiac disease. Objectives: To investigate if the amount of gluten intake is associated with celiac disease autoimmunity and celiac disease in genetically at-risk children. Design, Setting, and Participants: The participants in The Environmental Determinants of Diabetes in the Young (TEDDY), a prospective observational birth cohort study designed to identify environmental triggers of type 1 diabetes and celiac disease, were followed up at 6 clinical centers in Finland, Germany, Sweden, and the United States. Between 2004 and 2010, 8676 newborns carrying HLA antigen genotypes associated with type 1 diabetes and celiac disease were enrolled. Screening for celiac disease with tissue transglutaminase autoantibodies was performed annually in 6757 children from the age of 2 years. Data on gluten intake were available in 6605 children (98%) by September 30, 2017. Exposures: Gluten intake was estimated from 3-day food records collected at ages 6, 9, and 12 months and biannually thereafter until the age of 5 years. Main Outcomes and Measures: The primary outcome was celiac disease autoimmunity, defined as positive tissue transglutaminase autoantibodies found in 2 consecutive serum samples. The secondary outcome was celiac disease confirmed by intestinal biopsy or persistently high tissue transglutaminase autoantibody levels. Results: Of the 6605 children (49% females; median follow-up: 9.0 years [interquartile range, 8.0-10.0 years]), 1216 (18%) developed celiac disease autoimmunity and 447 (7%) developed celiac disease. The incidence for both outcomes peaked at the age of 2 to 3 years. Daily gluten intake was associated with higher risk of celiac disease autoimmunity for every 1-g/d increase in gluten consumption (hazard ratio [HR], 1.30 [95% CI, 1.22-1.38]; absolute risk by the age of 3 years if the reference amount of gluten was consumed, 28.1%; absolute risk if gluten intake was 1-g/d higher than the reference amount, 34.2%; absolute risk difference, 6.1% [95% CI, 4.5%-7.7%]). Daily gluten intake was associated with higher risk of celiac disease for every 1-g/d increase in gluten consumption (HR, 1.50 [95% CI, 1.35-1.66]; absolute risk by age of 3 years if the reference amount of gluten was consumed, 20.7%; absolute risk if gluten intake was 1-g/d higher than the reference amount, 27.9%; absolute risk difference, 7.2% [95% CI, 6.1%-8.3%]). Conclusions and Relevance: Higher gluten intake during the first 5 years of life was associated with increased risk of celiac disease autoimmunity and celiac disease among genetically predisposed children.
  •  
5.
  • Battaglia, Manuela, et al. (författare)
  • Introducing the Endotype Concept to Address the Challenge of Disease Heterogeneity in Type 1 Diabetes
  • 2020
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 1935-5548. ; 43:1, s. 5-12
  • Tidskriftsartikel (refereegranskat)abstract
    • The clinical diagnosis of new-onset type 1 diabetes has, for many years, been considered relatively straightforward. Recently, however, there is increasing awareness that within this single clinical phenotype exists considerable heterogeneity: disease onset spans the complete age range; genetic susceptibility is complex; rates of progression differ markedly, as does insulin secretory capacity; and complication rates, glycemic control, and therapeutic intervention efficacy vary widely. Mechanistic and immunopathological studies typically show considerable patchiness across subjects, undermining conclusions regarding disease pathways. Without better understanding, type 1 diabetes heterogeneity represents a major barrier both to deciphering pathogenesis and to the translational effort of designing, conducting, and interpreting clinical trials of disease-modifying agents. This realization comes during a period of unprecedented change in clinical medicine, with increasing emphasis on greater individualization and precision. For complex disorders such as type 1 diabetes, the option of maintaining the "single disease" approach appears untenable, as does the notion of individualizing each single patient's care, obliging us to conceptualize type 1 diabetes less in terms of phenotypes (observable characteristics) and more in terms of disease endotypes (underlying biological mechanisms). Here, we provide our view on an approach to dissect heterogeneity in type 1 diabetes. Using lessons from other diseases and the data gathered to date, we aim to delineate a roadmap through which the field can incorporate the endotype concept into laboratory and clinical practice. We predict that such an effort will accelerate the implementation of precision medicine and has the potential for impact on our approach to translational research, trial design, and clinical management.
  •  
6.
  •  
7.
  • Beyerlein, Andreas, et al. (författare)
  • Intake of Energy and Protein is Associated with Overweight Risk at Age 5.5 Years : Results from the Prospective TEDDY Study
  • 2017
  • Ingår i: Obesity. - : Nature Publishing Group. - 1930-7381. ; 25:8, s. 1435-1441
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: The associations of energy, protein, carbohydrate, and fat intake with weight status up to the age of 5.5 years were prospectively assessed in The Environmental Determinants of Diabetes in the Young (TEDDY) study. Methods: Food record data (over 3 days) and BMI measurements between 0.25 and 5.5 years were available from 5,563 children with an increased genetic risk for type 1 diabetes followed from shortly after birth. Odds ratios (ORs) were calculated for overweight and obesity by previous intake of energy, protein, carbohydrate, and fat with adjustment for potential confounders. Results: Having overweight or obesity at the age of 5.5 years was positively associated with mean energy intake in previous age intervals (e.g., adjusted OR [95% CI] for overweight: 1.06 [1.04-1.09] per 100 kcal intake at the age of 4.5-5.0 years) and with protein intake after the age of 3.5 and 4.5 years, respectively (e.g., adjusted OR for overweight: 1.06 [1.03-1.09] per 1% of energy intake at the age of 4.5-5.0 years). The respective associations with carbohydrate and fat intake were less consistent. Conclusions: These findings indicate that energy and protein intake are positively associated with increased risk for overweight in childhood but yield no evidence for potential programming effects of protein intake in infancy.
  •  
8.
  • Beyerlein, Andreas, et al. (författare)
  • Progression from islet autoimmunity to clinical type 1 diabetes is influenced by genetic factors : Results from the prospective TEDDY study
  • 2019
  • Ingår i: Journal of Medical Genetics. - : BMJ Publishing Group. - 0022-2593. ; 56:9, s. 602-605
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Progression time from islet autoimmunity to clinical type 1 diabetes is highly variable and the extent that genetic factors contribute is unknown. Methods: In 341 islet autoantibody-positive children with the human leucocyte antigen (HLA) DR3/DR4-DQ8 or the HLA DR4-DQ8/DR4-DQ8 genotype from the prospective TEDDY (The Environmental Determinants of Diabetes in the Young) study, we investigated whether a genetic risk score that had previously been shown to predict islet autoimmunity is also associated with disease progression. Results: Islet autoantibody-positive children with a genetic risk score in the lowest quartile had a slower progression from single to multiple autoantibodies (p=0.018), from single autoantibodies to diabetes (p=0.004), and by trend from multiple islet autoantibodies to diabetes (p=0.06). In a Cox proportional hazards analysis, faster progression was associated with an increased genetic risk score independently of HLA genotype (HR for progression from multiple autoantibodies to type 1 diabetes, 1.27, 95% CI 1.02 to 1.58 per unit increase), an earlier age of islet autoantibody development (HR, 0.68, 95% CI 0.58 to 0.81 per year increase in age) and female sex (HR, 1.94, 95% CI 1.28 to 2.93). Conclusions: Genetic risk scores may be used to identify islet autoantibody-positive children with high-risk HLA genotypes who have a slow rate of progression to subsequent stages of autoimmunity and type 1 diabetes.
  •  
9.
  • Bonifacio, Ezio, et al. (författare)
  • An Age-Related Exponential Decline in the Risk of Multiple Islet Autoantibody Seroconversion During Childhood
  • 2021
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 1935-5548.
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Islet autoimmunity develops before clinical type 1 diabetes and includes multiple and single autoantibody phenotypes. The objective was to determine age-related risks of islet autoantibodies that reflect etiology and improve screening for presymptomatic type 1 diabetes.RESEARCH DESIGN AND METHODS: The Environmental Determinants of Diabetes in the Young study prospectively monitored 8,556 genetically at-risk children at 3- to 6-month intervals from birth for the development of islet autoantibodies and type 1 diabetes. The age-related change in the risk of developing islet autoantibodies was determined using landmark and regression models.RESULTS: The 5-year risk of developing multiple islet autoantibodies was 4.3% (95% CI 3.8-4.7) at 7.5 months of age and declined to 1.1% (95% CI 0.8-1.3) at a landmark age of 6.25 years (P < 0.0001). Risk decline was slight or absent in single insulin and GAD autoantibody phenotypes. The influence of sex, HLA, and other susceptibility genes on risk subsided with increasing age and was abrogated by age 6 years. Highest sensitivity and positive predictive value of multiple islet autoantibody phenotypes for type 1 diabetes was achieved by autoantibody screening at 2 years and again at 5-7 years of age.CONCLUSIONS: The risk of developing islet autoimmunity declines exponentially with age, and the influence of major genetic factors on this risk is limited to the first few years of life.
  •  
10.
  • Bonifacio, Ezio, et al. (författare)
  • Genetic scores to stratify risk of developing multiple islet autoantibodies and type 1 diabetes : A prospective study in children
  • 2018
  • Ingår i: PLoS Medicine. - : Public Library of Science. - 1549-1676. ; 15:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Around 0.3% of newborns will develop autoimmunity to pancreatic beta cells in childhood and subsequently develop type 1 diabetes before adulthood. Primary prevention of type 1 diabetes will require early intervention in genetically at-risk infants. The objective of this study was to determine to what extent genetic scores (two previous genetic scores and a merged genetic score) can improve the prediction of type 1 diabetes. Methods and findings: The Environmental Determinants of Diabetes in the Young (TEDDY) study followed genetically at-risk children at 3- to 6-monthly intervals from birth for the development of islet autoantibodies and type 1 diabetes. Infants were enrolled between 1 September 2004 and 28 February 2010 and monitored until 31 May 2016. The risk (positive predictive value) for developing multiple islet autoantibodies (pre-symptomatic type 1 diabetes) and type 1 diabetes was determined in 4,543 children who had no first-degree relatives with type 1 diabetes and either a heterozygous HLA DR3 and DR4-DQ8 risk genotype or a homozygous DR4-DQ8 genotype, and in 3,498 of these children in whom genetic scores were calculated from 41 single nucleotide polymorphisms. In the children with the HLA risk genotypes, risk for developing multiple islet autoantibodies was 5.8% (95% CI 5.0%–6.6%) by age 6 years, and risk for diabetes by age 10 years was 3.7% (95% CI 3.0%–4.4%). Risk for developing multiple islet autoantibodies was 11.0% (95% CI 8.7%–13.3%) in children with a merged genetic score of >14.4 (upper quartile; n = 907) compared to 4.1% (95% CI 3.3%–4.9%, P < 0.001) in children with a genetic score of ≤14.4 (n = 2,591). Risk for developing diabetes by age 10 years was 7.6% (95% CI 5.3%–9.9%) in children with a merged score of >14.4 compared with 2.7% (95% CI 1.9%–3.6%) in children with a score of ≤14.4 (P < 0.001). Of 173 children with multiple islet autoantibodies by age 6 years and 107 children with diabetes by age 10 years, 82 (sensitivity, 47.4%; 95% CI 40.1%–54.8%) and 52 (sensitivity, 48.6%, 95% CI 39.3%–60.0%), respectively, had a score >14.4. Scores were higher in European versus US children (P = 0.003). In children with a merged score of >14.4, risk for multiple islet autoantibodies was similar and consistently >10% in Europe and in the US; risk was greater in males than in females (P = 0.01). Limitations of the study include that the genetic scores were originally developed from case–control studies of clinical diabetes in individuals of mainly European decent. It is, therefore, possible that it may not be suitable to all populations. Conclusions: A type 1 diabetes genetic score identified infants without family history of type 1 diabetes who had a greater than 10% risk for pre-symptomatic type 1 diabetes, and a nearly 2-fold higher risk than children identified by high-risk HLA genotypes alone. This finding extends the possibilities for enrolling children into type 1 diabetes primary prevention trials.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 57
  • [1]23456Nästa

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy