SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kritzberg Emma) ;lar1:(kau)"

Sökning: WFRF:(Kritzberg Emma) > Karlstads universitet

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ekström, Sara M., et al. (författare)
  • Increasing concentrations of iron in surface waters as a consequence of reducing conditions in the catchment area
  • 2016
  • Ingår i: Journal of Geophysical Research - Biogeosciences. - 2169-8953 .- 2169-8961. ; 121:2, s. 479-493
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent studies report trends of strongly increasing iron (Fe) concentrations in freshwaters. Since Fe is a key element with a decisive role in the biogeochemical cycling of major elements, it is important to understand the mechanisms behind these trends. We hypothesized that variations in Fe concentration are driven mainly by redox dynamics in hydraulically connected soils. Notably, Fe(III), which is the favored oxidation state except in environments where microbial activity provide strong reducing intensity, has several orders of magnitude lower water solubility than Fe(II). To test our hypothesis, seasonal variation in water chemistry, discharge, and air temperature was studied in three Swedish rivers. Methylmercury and sulfate were used as indicators of seasonal redox changes. Seasonal variability in water chemistry, discharge, and air temperature in the Eman and Lyckeby Rivers implied that the variation in Fe was primarily driven by the prevalence of reducing conditions in the catchment. In general, high Fe concentrations were observed when methylmercury was high and sulfate was low, indicative of reducing conditions. The Fe concentrations showed no or weak relationships with variations in dissolved organic matter concentration and aromaticity. The seasonal variation in Fe concentration of the Ume river was primarily dependent on timing of the snowmelt in high- versus low-altitude areas of the catchment. There were long-term trends of increasing temperature in all catchments and also trends of increasing discharge in the southern rivers, which should increase the probability for anaerobic conditions in space and time and thereby increase Fe transport to the aquatic systems.
  •  
2.
  • Ekström, Sara M., et al. (författare)
  • Reactivity of dissolved organic matter in response to acid deposition
  • 2016
  • Ingår i: Aquatic Sciences. - : Springer. - 1015-1621 .- 1420-9055. ; 78:3, s. 463-475
  • Tidskriftsartikel (refereegranskat)abstract
    • Fluvial export of organic matter from the terrestrial catchment to the aquatic system is a large and increasing carbon flux. The successful reduction in sulfuric acid deposition since the 1980s has been shown to enhance the mobility of organic matter in the soil, with more terrestrially derived dissolved organic matter (DOM) reaching aquatic systems. Changes in soil acidity also affect the quality of the DOM. In this study we explore the consequences this may have on the reactivity and turnover of the terrestrially derived DOM as it reaches the aquatic system. DOM of different quality (estimated by absorbance, fluorescence and size exclusion chromatography) was produced through extraction of boreal forest O-horizon soils from podzol at two sulfuric acid concentrations corresponding to natural throughfall in spruce forest in Southern Sweden around 1980 and today. Extraction was done using two different methods, i.e. field leaching and laboratory extraction. The DOM extracts were used to assess if differences in acidity generate DOM of different reactivity. Three reactivity experiments were performed: photodegradation by UV exposure, biodegradation by bacteria, and biodegradation after UV exposure. Reactivity was assessed by measuring loss of dissolved organic carbon and absorbance, change in fluorescence and molecular weight, and bacterial production. DOM extracted at lower sulfuric acid concentration was more susceptible to photooxidation, and less susceptible to bacterial degradation, than DOM extracted at a higher sulfuric acid concentration. Thus the relative importance of these two turnover processes may be altered with changes in acid deposition.
  •  
3.
  • Hansson, Lars-Anders, et al. (författare)
  • Food-chain length alters community responses to global change in aquatic systems
  • 2013
  • Ingår i: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-678X .- 1758-6798. ; 3, s. 228-233
  • Tidskriftsartikel (refereegranskat)abstract
    • Synergies between large-scale environmental changes, such as climate change1 and increased humic content (brownification)2, will have a considerable impact on future aquatic ecosystems. On the basis of modelling, monitoring and experimental data, we demonstrate that community responses to global change are determined by food-chain length and that the top trophic level, and every second level below, will benefit from climate change, whereas the levels in between will suffer. Hence, phytoplankton, and thereby algal blooms, will benefit from climate change in three-, but not in two-trophic-level systems. Moreover, we show that both phytoplankton (resource) and zooplankton (consumer) advance their spring peak abundances similarly in response to a 3 °C temperature increase; that is, there is no support for a consumer/resource mismatch in a future climate scenario. However, in contrast to other taxa, cyanobacteria—known as toxin-producing nuisance phytoplankton3—benefit from a higher temperature and humic content irrespective of the food-chain composition. Our results are mirrored in natural ecosystems. By mechanistically merging present food-chain theory with large-scale environmental and climate changes, we provide a powerful framework for predicting and understanding future aquatic ecosystems and their provision of ecosystem services and water resources.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy