SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kritzberg Emma) ;pers:(Ljung Karl)"

Sökning: WFRF:(Kritzberg Emma) > Ljung Karl

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Charrieau, Laurie M., et al. (författare)
  • Decalcification and survival of benthic foraminifera under the combined impacts of varying pH and salinity
  • 2018
  • Ingår i: Marine Environmental Research. - : Elsevier BV. - 0141-1136. ; 138, s. 36-45
  • Tidskriftsartikel (refereegranskat)abstract
    • Coastal areas display natural large environmental variability such as frequent changes in salinity, pH, and carbonate chemistry. Anthropogenic impacts – especially ocean acidification – increase this variability, which may affect the living conditions of coastal species, particularly, calcifiers. We performed culture experiments on living benthic foraminifera to study the combined effects of lowered pH and salinity on the calcification abilities and survival of the coastal, calcitic species Ammonia sp. and Elphidium crispum. We found that in open ocean conditions (salinity ∼35) and lower pH than usual values for these species, the specimens displayed resistance to shell (test) dissolution for a longer time than in brackish conditions (salinity ∼5 to 20). However, the response was species specific as Ammonia sp. specimens survived longer than E. crispum specimens when placed in the same conditions of salinity and pH. Living, decalcified juveniles of Ammonia sp. were observed and we show that desalination is one cause for the decalcification. Finally, we highlight the ability of foraminifera to survive under Ωcalc < 1, and that high salinity and [Ca2+] as building blocks are crucial for the foraminiferal calcification process.
  •  
2.
  • Charrieau, Laurie M., et al. (författare)
  • The effects of multiple stressors on the distribution of coastal benthic foraminifera: A case study from the Skagerrak-Baltic Sea region
  • 2018
  • Ingår i: Marine Micropaleontology. - : Elsevier BV. - 0377-8398. ; 139, s. 42-56
  • Tidskriftsartikel (refereegranskat)abstract
    • Coastal ecosystems are subjected to both large natural variability and increasing anthropogenic impact on environmental parameters such as changes in salinity, temperature, and pH. This study documents the distribution of living benthic foraminifera under the influence of multiple environmental stressors in the Skagerrak-Baltic Sea region. Sediment core tops were studied at five sites along a transect from the Skagerrak to the Baltic Sea, with strong environmental gradients, especially in terms of salinity, pH, calcium carbonate saturation and dissolved oxygen concentration in the bottom water and pore water. We found that living foraminiferal densities and species richness were higher at the Skagerrak station, where the general living conditions were relatively beneficial for Foraminifera, with higher salinity and Ωcalc in the water column and higher pH and oxygen concentration in the bottom and pore water. The most common species reported at each station reflect the differences in the environmental conditions between the stations. The dominant species were Cassidulina laevigata and Hyalinea balthica in the Skagerrak, Stainforthia fusiformis, Nonionella aff. stella and Nonionoides turgida in the Kattegat and N. aff. stella and Nonionellina labradorica in the Öresund. The most adverse conditions, such as low salinity, low Ωcalc, low dissolved oxygen concentrations and low pH, were noted at the Baltic Sea stations, where the calcareous tests of the dominant living taxa Ammonia spp. and Elphidium spp. were partially to completely dissolved, probably due to a combination of different stressors affecting the required energy for biomineralization. Even though Foraminifera are able to live in extremely varying environmental conditions, the present results suggest that the benthic coastal ecosystems in the studied region, which are apparently affected by an increase in the range of environmental variability, will probably be even more influenced by a future increase in anthropogenic impacts, including coastal ocean acidification and deoxygenation.
  •  
3.
  • Charrieau, Laurie, et al. (författare)
  • Rapid environmental responses to climate-induced hydrographic changes in the Baltic Sea entrance
  • 2019
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4189 .- 1726-4170. ; 16, s. 3835-3852
  • Tidskriftsartikel (refereegranskat)abstract
    • The Öresund (the Sound), which is a part of the Danish straits, is linking the marine North Sea and the brackish Baltic Sea. It is a transition zone where ecosystems are subjected to large gradients in terms of salinity, temperature, carbonate chemistry, and dissolved oxygen concentration. In addition to the highly variable environmental conditions, the area is responding to anthropogenic disturbances in e.g. nutrient loading, temperature, and pH. We have reconstructed environmental changes in the Öresund during the last c. 200 years, and especially dissolved oxygen concentration, salinity, organic matter content, and pollution levels, using benthic foraminifera and sediment geochemistry. Five zones with characteristic foraminiferal assemblages were identified, each reflecting the environmental conditions for respective period. The largest changes occurred ~ 1950, when the foraminiferal assemblage shifted from a low diversity fauna, dominated by the species Stainforthia fusiformis to higher diversity and abundance, and dominance of the Elphidium group. Concurrently, the grain-size distribution shifted from clayey – to more sandy sediment. To explore the causes for the environmental changes, we used time-series of reconstructed wind conditions coupled with large-scale climate variations as recorded by the NAO index, as well as the ECOSMO II model of currents in the Öresund area. The results indicate increased changes in the water circulation towards stronger currents in the area since the 1950's. The foraminiferal fauna responded quickly (< 10 years) to the environmental changes. Notably, when the wind conditions, and thereby the current system, returned in the 1980's to the previous pattern, the foraminiferal species assemblage did not rebound, but the foraminiferal faunas rather displayed a new equilibrium state.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy