SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kritzberg Emma) ;pers:(Nicolle Alice)"

Sökning: WFRF:(Kritzberg Emma) > Nicolle Alice

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hansson, Lars-Anders, et al. (författare)
  • Food-chain length alters community responses to global change in aquatic systems
  • 2013
  • Ingår i: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-678X .- 1758-6798. ; 3, s. 228-233
  • Tidskriftsartikel (refereegranskat)abstract
    • Synergies between large-scale environmental changes, such as climate change1 and increased humic content (brownification)2, will have a considerable impact on future aquatic ecosystems. On the basis of modelling, monitoring and experimental data, we demonstrate that community responses to global change are determined by food-chain length and that the top trophic level, and every second level below, will benefit from climate change, whereas the levels in between will suffer. Hence, phytoplankton, and thereby algal blooms, will benefit from climate change in three-, but not in two-trophic-level systems. Moreover, we show that both phytoplankton (resource) and zooplankton (consumer) advance their spring peak abundances similarly in response to a 3 °C temperature increase; that is, there is no support for a consumer/resource mismatch in a future climate scenario. However, in contrast to other taxa, cyanobacteria—known as toxin-producing nuisance phytoplankton3—benefit from a higher temperature and humic content irrespective of the food-chain composition. Our results are mirrored in natural ecosystems. By mechanistically merging present food-chain theory with large-scale environmental and climate changes, we provide a powerful framework for predicting and understanding future aquatic ecosystems and their provision of ecosystem services and water resources.
  •  
2.
  • Hansson, Lars-Anders, et al. (författare)
  • Food-chain length alters community responses to global change in aquatic systems
  • 2013
  • Ingår i: Nature Climate Change. - 1758-6798. ; 3:3, s. 228-233
  • Tidskriftsartikel (refereegranskat)abstract
    • Synergies between large-scale environmental changes, such as climate change(1) and increased humic content (brownification)(2), will have a considerable impact on future aquatic ecosystems. On the basis of modelling, monitoring and experimental data, we demonstrate that community responses to global change are determined by food-chain length and that the top trophic level, and every second level below, will benefit from climate change, whereas the levels in between will suffer. Hence, phytoplankton, and thereby algal blooms, will benefit from climate change in three-, but not in two-trophic-level systems. Moreover, we show that both phytoplankton (resource) and zooplankton (consumer) advance their spring peak abundances similarly in response to a 3 degrees C temperature increase; that is, there is no support for a consumer/resource mismatch in a future climate scenario. However, in contrast to other taxa, cyanobacteria-known as toxin-producing nuisance phytoplankton(3)-benefit from a higher temperature and humic content irrespective of the food-chain composition. Our results are mirrored in natural ecosystems. By mechanistically merging present food-chain theory with large-scale environmental and climate changes, we provide a powerful framework for predicting and understanding future aquatic ecosystems and their provision of ecosystem services and water resources.
  •  
3.
  • Kritzberg, Emma, et al. (författare)
  • Warming and browning of lakes: consequences for pelagic carbon metabolism and sediment delivery
  • 2014
  • Ingår i: Freshwater Biology. - : Wiley. - 0046-5070. ; 59:2, s. 325-336
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. Thousands of lakes in the Northern Hemisphere are experiencing a continuous increase in water temperature and colour. While increasing temperature is an effect of climate change, several factors are suggested to drive the increasing water colour, including climate change, altered land use and reversed acidification. 2. In this mesocosm study, we study the effects on pelagic production and sedimentation of organic carbon from a 3 degrees C increase in temperature, a doubling of water colour and a combination of increased temperature and water colour. These manipulations correspond to the predicted development in water colour and temperature in northern temperate systems within the life time of the next generation. 3. The water and plankton communities in the mesocosms were taken from an oligohumic and mesotrophic lake, and the increase in water colour was achieved by the additions of water from a humic lake. The experiment ran from early March to late October. 4. In accordance with our predictions and previous cross-system analyses, net carbon production (NCP) and organic carbon sedimentation decreased in response to increasing water colour. 5. At odds with current theory, NCP and sedimentation increased in heated treatments, as not only respiration but also gross production increased in response to temperature. There were no synergistic effects between warming and browning. 6. These results imply that warming may enhance pelagic delivery of organic carbon to sediments. This could potentially offset a reduction in burial efficiency of organic carbon, which has been projected based on a positive relationship between carbon mineralisation in sediments and temperature.
  •  
4.
  • Nicolle, Alice, et al. (författare)
  • Predicted warming and browning affect timing and magnitude of plankton phenological events in lakes: a mesocosm study
  • 2012
  • Ingår i: Freshwater Biology. - : Wiley. - 0046-5070. ; 57:4, s. 684-695
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. Aquatic ecosystems in Northern Europe are expected to face increases in temperature and water colour (TB) in future. While effects of these factors have been studied separately, it is unknown whether and how a combination of them might affect phenological events and trophic interactions. 2. In a mesocosm study, we combined both factors to create conditions expected to arise during the coming century. We focused on quantifying effects on timing and magnitude of plankton spring phenological events and identifying possible mismatches between resources (phytoplankton) and consumers (zooplankton). 3. We found that the increases in TB had important effects on timing and abundance of different plankton groups. While increased temperature led to an earlier peak in phytoplankton and zooplankton and a change in the relative timing of different zooplankton groups, increased water colour reduced chlorophyll-a concentrations. 4. Increased TB together benefitted cladocerans and calanoid copepods and led to stronger top-down control of algae by zooplankton. There was no sign of a mismatch between primary producers and grazers as reported from other studies. 5. Our results point towards an earlier onset of plankton spring growth in shallow lakes in future with a stronger top-down control of phytoplankton by zooplankton grazers.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy