SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kritzberg Emma) ;pers:(Nielsen Nikoline J.)"

Sökning: WFRF:(Kritzberg Emma) > Nielsen Nikoline J.

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Logue, Jürg Brendan, et al. (författare)
  • Experimental insights into the importance of aquatic bacterial community composition to the degradation of dissolved organic matter
  • 2016
  • Ingår i: The ISME Journal. - : Springer Science and Business Media LLC. - 1751-7362 .- 1751-7370. ; 10:3, s. 533-545
  • Tidskriftsartikel (refereegranskat)abstract
    • Bacteria play a central role in the cycling of carbon, yet our understanding of the relationship between the taxonomic composition and the degradation of dissolved organic matter (DOM) is still poor. In this experimental study, we were able to demonstrate a direct link between community composition and ecosystem functioning in that differently structured aquatic bacterial communities differed in their degradation of terrestrially derived DOM. Although the same amount of carbon was processed, both the temporal pattern of degradation and the compounds degraded differed among communities. We, moreover, uncovered that low-molecular-weight carbon was available to all communities for utilisation, whereas the ability to degrade carbon of greater molecular weight was a trait less widely distributed. Finally, whereas the degradation of either low-or high-molecular-weight carbon was not restricted to a single phylogenetic clade, our results illustrate that bacterial taxa of similar phylogenetic classification differed substantially in their association with the degradation of DOM compounds. Applying techniques that capture the diversity and complexity of both bacterial communities and DOM, our study provides new insight into how the structure of bacterial communities may affect processes of biogeochemical significance.
  •  
2.
  • Reader, Heather E., et al. (författare)
  • Mass and UV-visible spectral fingerprints of dissolved organic matter : Sources and reactivity
  • 2015
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 2:OCT
  • Tidskriftsartikel (refereegranskat)abstract
    • Advanced analytical techniques have revealed a high degree of complexity in the chemical makeup of dissolved organic matter (DOM). This has opened the door for a deeper understanding of the role of DOM in the aquatic environment. However, the expense, analytical cost, and challenges related to interpretation of the large datasets generated by these methods limit their widespread application. Optical methods, such as absorption and fluorescence spectroscopy are relatively inexpensive and easy to implement, but lack the detailed information available in more advanced methods. We were able to directly link the analysis of absorption spectra to the mass spectra of DOM using an in-line detector system coupled to multivariate data analysis. Monthly samples were taken from three river mouths in Sweden for 1 year. One subset of samples was exposed to photochemical degradation and another subset was exposed to long-term (4 months) biological degradation. A principle component analysis was performed on the coupled absorption-mass spectra data. Loading spectra for each principle component show distinct fingerprints for both reactivity (i.e., photochemical, biological degradation) and source (i.e., catchment land cover, temperature, hydrology). The fingerprints reveal mass-to-charge values that contribute to optical signals and characteristics seen in past studies, and emphasize the difficulties in interpreting changes in bulk CDOM characteristics resulting from multiple catchment processes. The approach provides a potential simple method for using optical indicators as tracers for more complex chemical processes both with regards to source material for DOM and the past reactive processing of DOM.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy