SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kruger R) ;lar1:(mau)"

Sökning: WFRF:(Kruger R) > Malmö universitet

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bruns, S., et al. (författare)
  • On the material dependency of peri-implant morphology and stability in healing bone
  • 2023
  • Ingår i: Bioactive Materials. - : Elsevier. - 2452-199X. ; 28, s. 155-166
  • Tidskriftsartikel (refereegranskat)abstract
    • The microstructural architecture of remodeled bone in the peri-implant region of screw implants plays a vital role in the distribution of strain energy and implant stability. We present a study in which screw implants made from titanium, polyetheretherketone and biodegradable magnesium-gadolinium alloys were implanted into rat tibia and subjected to a push-out test four, eight and twelve weeks after implantation. Screws were 4 mm in length and with an M2 thread. The loading experiment was accompanied by simultaneous three-dimensional imaging using synchrotron-radiation microcomputed tomography at 5 mu m resolution. Bone deformation and strains were tracked by applying optical flow-based digital volume correlation to the recorded image sequences. Implant stabilities measured for screws of biodegradable alloys were comparable to pins whereas non-degradable biomaterials experienced additional mechanical stabilization. Peri-implant bone morphology and strain transfer from the loaded implant site depended heavily on the biomaterial utilized. Titanium implants stimulated rapid callus formation displaying a consistent monomodal strain profile whereas the bone volume fraction in the vicinity of magnesium-gadolinium alloys exhibited a minimum close to the interface of the implant and less ordered strain transfer. Correlations in our data suggest that implant stability benefits from disparate bone morphological properties depending on the biomaterial utilized. This leaves the choice of biomaterial as situational depending on local tissue properties.
  •  
2.
  • Kruger, D., et al. (författare)
  • High-resolution ex vivo analysis of the degradation and osseointegration of Mg-xGd implant screws in 3D
  • 2022
  • Ingår i: Bioactive Materials. - : Elsevier BV. - 2452-199X. ; 13, s. 37-52
  • Tidskriftsartikel (refereegranskat)abstract
    • Biodegradable magnesium (Mg) alloys can revolutionize osteosynthesis, because they have mechanical properties similar to those of the bone, and degrade over time, avoiding the need of removal surgery. However, they are not yet routinely applied because their degradation behavior is not fully understood. In this study we have investigated and quantified the degradation and osseointegration behavior of two biodegradable Mg alloys based on gadolinium (Gd) at high resolution. Mg-5Gd and Mg-10Gd screws were inserted in rat tibia for 4, 8 and 12 weeks. Afterward, the degradation rate and degradation homogeneity, as well as bone-to-implant interface, were studied with synchrotron radiation micro computed tomography and histology. Titanium (Ti) and polyether ether ketone (PEEK) were used as controls material to evaluate osseointegration. Our results showed that Mg-5Gd degraded faster and less homogeneously than Mg-10Gd. Both alloys gradually form a stable degradation layer at the interface and were surrounded by new bone tissue. The results were correlated to in vitro data obtained from the same material and shape. The average bone-to-implant contact of the Mg-xGd implants was comparable to that of Ti and higher than for PEEK. The results suggest that both Mg-xGd alloys are suitable as materials for bone implants.
  •  
3.
  • Zeller-Plumhoff, B., et al. (författare)
  • Analysis of the bone ultrastructure around biodegradable Mg-xGd implants using small angle X-ray scattering and X-ray diffraction
  • 2020
  • Ingår i: Acta Biomaterialia. - : Elsevier BV. - 1742-7061 .- 1878-7568. ; 101, s. 637-645
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnesium alloys are increasingly researched as temporary biodegradable metal implants in bone applications due to their mechanical properties which are more similar to bone than conventional implant metals and the fact that Magnesium occurs naturally within the body. However, the degradation processes in vivo and in particular the interaction of the bone with the degrading material need to be further investigated. In this study we are presenting the first quantitative comparison of the bone ultrastructure formed at the interface of biodegradable Mg-5Gd and Mg-10Gd implants and titanium and PEEK implants after 4, 8 and 12 weeks healing time using two-dimensional small angle X-ray scattering and X-ray diffraction. Differences in mineralization, orientation and thickness of the hydroxyapatite are assessed. We find statistically significant (p < 0.05) differences for the lattice spacing of the (310)-reflex of hydroxyapatite between titanium and Mg-xGd materials, as well as for the (310) crystal size between titanium and Mg-5Gd, indicating a possible deposition of Mg within the bone matrix. The (310) lattice spacing and crystallite size further differ significantly between implant degradation layer and surrounding bone (p < 0.001 for Mg-10Gd), suggesting apatite formation with significant amounts of Gd and Mg within the degradation layer. Statement of significance Biodegradable Magnesium-based alloys are emerging as a viable alternative for temporary bone implant applications. However, in order to understand if the degradation of the implant material influences the bone ultrastructure, it is necessary to study the bone structure using high-resolution techniques. We have therefore employed 2D small angle X-ray scattering and X-ray diffraction to study the bone ultrastructure surrounding Magnesium-Gadolinium alloys as well as Titanium and PEEK alloys at three different healing times. This is the first time, that the bone ultrastructure around these materials is directly compared and that a statistical evaluation is performed. We found differences indicating a possible deposition of Mg within the bone matrix as well as a local deposition of Mg and/or Gd at the implant site. Data availability statement The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study. (C) 2019 The Authors. Published by Elsevier Ltd on behalf of Acta Materialia Inc.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy