SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Krupinski J.) ;pers:(Filipsson Helena L.)"

Sökning: WFRF:(Krupinski J.) > Filipsson Helena L.

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kotthoff, U., et al. (författare)
  • Reconstructing Holocene temperature and salinity variations in the western Baltic Sea region: a multi-proxy comparison from the Little Belt (IODP Expedition 347, Site M0059)
  • 2017
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 14, s. 5607-5632
  • Tidskriftsartikel (refereegranskat)abstract
    • Sediment records recovered from the Baltic Sea during Integrated Ocean Drilling Program Expedition 347 provide a unique opportunity to study paleoenvironmental and climate change in central and northern Europe. Such studies contribute to a better understanding of how environmental parameters change in continental shelf seas and enclosed basins. Here we present a multi-proxy-based reconstruction of paleotemperature (both marine and terrestrial), paleosalinity, and paleoecosystem changes from the Little Belt (Site M0059) over the past  ∼  8000 years and evaluate the applicability of inorganic- and organic-based proxies in this particular setting. All salinity proxies (diatoms, aquatic palynomorphs, ostracods, diol index) show that lacustrine conditions occurred in the Little Belt until  ∼  7400 cal yr BP. A connection to the Kattegat at this time can thus be excluded, but a direct connection to the Baltic Proper may have existed. The transition to the brackish–marine conditions of the Littorina Sea stage (more saline and warmer) occurred within  ∼  200 years when the connection to the Kattegat became established after  ∼  7400 cal yr BP. The different salinity proxies used here generally show similar trends in relative changes in salinity, but often do not allow quantitative estimates of salinity. The reconstruction of water temperatures is associated with particularly large uncertainties and variations in absolute values by up to 8 °C for bottom waters and up to 16 °C for surface waters. Concerning the reconstruction of temperature using foraminiferal Mg  /  Ca ratios, contamination by authigenic coatings in the deeper intervals may have led to an overestimation of temperatures. Differences in results based on the lipid paleothermometers (long chain diol index and TEXL86) can partly be explained by the application of modern-day proxy calibrations to intervals that experienced significant changes in depositional settings: in the case of our study, the change from freshwater to marine conditions. Our study shows that particular caution has to be taken when applying and interpreting proxies in coastal environments and marginal seas, where water mass conditions can experience more rapid and larger changes than in open ocean settings. Approaches using a multitude of independent proxies may thus allow a more robust paleoenvironmental assessment.
  •  
2.
  • Hyttinen, O., et al. (författare)
  • Deglaciation dynamics of the Fennoscandian Ice Sheet in the Kattegat, the gateway between the North Sea and the Baltic Sea Basin
  • 2021
  • Ingår i: Boreas. - : John Wiley & Sons. - 0300-9483 .- 1502-3885. ; 50:2, s. 351-368
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents an age–depth model based on an ultra-high-resolution, 80-m-thick sedimentary succession from a marine continental shelf basin, the Kattegat. This is an area of dynamic deglaciation of the Fennoscandian Ice Sheet during the Late Pleistocene. The Kattegat is also a transitional area between the saline North Sea and the brackish Baltic Sea. As such, it records general development of currents and exchange between these two systems. Data for the succession were provided through the Integrated Ocean Drilling Program Site M0060. The site indicates onset of deglaciation at c. 18 ka BP and relatively continuous sedimentation until 13 ka BP. At this point, sediments record a hiatus until c. 9–7 ka BP. The uppermost sedimentary unit contains redeposited material, but it is estimated to represent only the last c. 9–7 ka BP. The age–depth model is based on 17 select, radiocarbon-dated samples and is integrated with a set of physical and chemical proxies. The integrated records provide novel constraints on the timing of major palaeoenvironmental changes, such as the transition from glaciomarine proximal to glaciomarine distal and marine conditions, and their connections to known major events and processes in the region and the North Atlantic. Depositional evidence specifically documents connections between the Fennoscandian Ice Sheet behaviour and atmospheric and oceanic warming. Glacial retreat may have also depended on topographic factors such as changes in basin width and depth, linked to relative sea level changes and land uplift. The results indicate an early response of the Fennoscandian Ice Sheet to changing climate, and the ice sheet's possible influence on oceanic circulation during the Late Pleistocene deglaciation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy