SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kubyshkina M. V.) ;pers:(Khotyaintsev Yuri)"

Sökning: WFRF:(Kubyshkina M. V.) > Khotyaintsev Yuri

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Varsani, A., et al. (författare)
  • Simultaneous Remote Observations of Intense Reconnection Effects by DMSP and MMS Spacecraft During a Storm Time Substorm
  • 2017
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 122:11, s. 10891-10909
  • Tidskriftsartikel (refereegranskat)abstract
    • During a magnetic storm on 23 June 2015, several very intense substorms took place, with signatures observed by multiple spacecraft including DMSP and Magnetospheric Multiscale (MMS). At the time of interest, DMSP F18 crossed inbound through a poleward expanding auroral bulge boundary at 23.5 h magnetic local time (MLT), while MMS was located duskward of 22 h MLT during an inward crossing of the expanding plasma sheet boundary. The two spacecraft observed a consistent set of signatures as they simultaneously crossed the reconnection separatrix layer during this very intense reconnection event. These include (1) energy dispersion of the energetic ions and electrons traveling earthward, accompanied with high electron energies in the vicinity of the separatrix; (2) energy dispersion of polar rain electrons, with a high-energy cutoff; and (3) intense inward convection of the magnetic field lines at the MMS location. The high temporal resolution measurements by MMS provide unprecedented observations of the outermost electron boundary layer. We discuss the relevance of the energy dispersion of the electrons, and their pitch angle distribution, to the spatial and temporal evolution of the boundary layer. The results indicate that the underlying magnetotail magnetic reconnection process was an intrinsically impulsive and the active X-line was located relatively close to the Earth, approximately at 16-18 R-E.
  •  
2.
  • Nakamura, R., et al. (författare)
  • Flow bouncing and electron injection observed by Cluster
  • 2013
  • Ingår i: Journal of Geophysical Research-Space Physics. - : American Geophysical Union (AGU). - 2169-9380. ; 118:5, s. 2055-2072
  • Tidskriftsartikel (refereegranskat)abstract
    • Characteristics of particles and fields in the flow-bouncing region are studied based on multipoint observations from Cluster located at 13-15R(E) downtail during a substorm event around 12:50 UT on 7 September 2007. The Cluster spacecraft were separated by a distance of up to 10,000 km and allowed to determine the mesoscale evolution of the current sheet as well as the development of the dipolarization front. We show that the flow bouncing took place associated with a tailward-directed j x B force in a disturbed current sheet in addition to an enhanced tailward pressure gradient force. Multiple Earthward propagating dipolarization fronts accompanied by enhanced flux of energetic electrons were observed before the flow bouncing. The sequence of events started with a localized dipolarization front and ended with a large scale (>10R(E)) dipolarization front accompanied by a major increase in energetic electrons at all spacecraft and immediately followed by flow bouncing. Multiple dipolarization fronts result in the formation of compressed magnetic field with a plasma bulge bounded by thin ion-scale current layers, a favorable condition for flow bouncing. These observations suggest that to understand the flow bouncing and related acceleration of plasma in the near-Earth tail, both the large-scale MHD properties and the transient and small-scale effect of the plasma interaction with the Earth-dipole field need to be taken into account.
  •  
3.
  • Apatenkov, S. V., et al. (författare)
  • Multi-spacecraft observation of plasma dipolarization/injection in the inner magnetosphere
  • 2007
  • Ingår i: Annales Geophysicae. - 0992-7689 .- 1432-0576. ; 25:3, s. 801-814
  • Tidskriftsartikel (refereegranskat)abstract
    • Addressing the origin of the energetic particle injections into the inner magnetosphere, we investigate the 23 February 2004 substorm using a favorable constellation of four Cluster (near perigee), LANL and Geotail spacecraft. Both an energy-dispersed and a dispersionless injection were observed by Cluster crossing the plasma sheet horn, which mapped to 9-12 R-E in the equatorial plane close to the midnight meridian. Two associated narrow equatorward auroral tongues/streamers propagating from the oval poleward boundary could be discerned in the global images obtained by IMAGE/WIC. As compared to the energy-dispersed event, the dispersionless injection front has important distinctions consequently repeated at 4 spacecraft: a simultaneous increase in electron fluxes at energies similar to 1.300 keV, similar to 25 nT increase in B-Z and a local increase by a factor 1.5-1.7 in plasma pressure. The injected plasma was primarily of solar wind origin. We evaluated the change in the injected flux tube configuration during the dipolarization by fitting flux increases observed by the PEACE and RAPID instruments, assuming adiabatic heating and the Liouville theorem. Mapping the locations of the injection front detected by the four spacecraft to the equatorial plane, we estimated the injection front thickness to be similar to 1 R-E and the earthward propagation speed to be similar to 200-400km/s (at 9-12 RE). Based on observed injection properties, we suggest that it is the underpopulated flux tubes (bubbles with enhanced magnetic field and sharp inner front propagating earthward), which accelerate and transport particles into the strong-field dipolar region.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy