SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kuenzli Nino) ;pers:(Modig Lars)"

Sökning: WFRF:(Kuenzli Nino) > Modig Lars

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beelen, Rob, et al. (författare)
  • Effects of long-term exposure to air pollution on natural-cause mortality : an analysis of 22 European cohorts within the multicentre ESCAPE project
  • 2014
  • Ingår i: The Lancet. - : Elsevier. - 0140-6736 .- 1474-547X. ; 383:9919, s. 785-795
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Few studies on long-term exposure to air pollution and mortality have been reported from Europe. Within the multicentre European Study of Cohorts for Air Pollution Effects (ESCAPE), we aimed to investigate the association between natural-cause mortality and long-term exposure to several air pollutants. Methods We used data from 22 European cohort studies, which created a total study population of 367 251 participants. All cohorts were general population samples, although some were restricted to one sex only. With a strictly standardised protocol, we assessed residential exposure to air pollutants as annual average concentrations of particulate matter (PM) with diameters of less than 2.5 mu m (PM2.5), less than 10 mu m (PM10), and between 10 mu m and 2.5 mu m (PMcoarse), PM2.5 absorbance, and annual average concentrations of nitrogen oxides (NO2 and NOx), with land use regression models. We also investigated two traffic intensity variables-traffic intensity on the nearest road (vehicles per day) and total traffic load on all major roads within a 100 m buff er. We did cohort-specific statistical analyses using confounder models with increasing adjustment for confounder variables, and Cox proportional hazards models with a common protocol. We obtained pooled effect estimates through a random-effects meta-analysis. Findings The total study population consisted of 367 251 participants who contributed 5 118 039 person-years at risk (average follow-up 13.9 years), of whom 29 076 died from a natural cause during follow-up. A significantly increased hazard ratio (HR) for PM2.5 of 1.07 (95% CI 1.02-1.13) per 5 mu g/m(3) was recorded. No heterogeneity was noted between individual cohort effect estimates (I-2 p value=0.95). HRs for PM2.5 remained significantly raised even when we included only participants exposed to pollutant concentrations lower than the European annual mean limit value of 25 mu g/m(3) (HR 1.06, 95% CI 1.00-1.12) or below 20 mu g/m(3) (1.07, 1.01-1.13). Interpretation Long-term exposure to fine particulate air pollution was associated with natural-cause mortality, even within concentration ranges well below the present European annual mean limit value.
  •  
2.
  • de Hoogh, Kees, et al. (författare)
  • Comparing land use regression and dispersion modelling to assess residential exposure to ambient air pollution for epidemiological studies
  • 2014
  • Ingår i: Environment International. - : Elsevier BV. - 0160-4120 .- 1873-6750. ; 73, s. 382-392
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Land-use regression (LUR) and dispersion models (DM) are commonly used for estimating individual air pollution exposure in population studies. Few comparisons have however been made of the performance of these methods. Objectives: Within the European Study of Cohorts for Air Pollution Effects (ESCAPE) we explored the differences between LUR and DM estimates for NO2, PM10 and PM2.5. Methods: The ESCAPE study developed LUR models for outdoor air pollution levels based on a harmonised monitoring campaign. In thirteen ESCAPE study areas we further applied dispersion models. We compared LUR and DM estimates at the residential addresses of participants in 13 cohorts for NO2; 7 for PM10 and 4 for PM2.5. Additionally, we compared the DM estimates with measured concentrations at the 20-40 ESCAPE monitoring sites in each area. Results: The median Pearson R (range) correlation coefficients between LUR and DM estimates for the annual average concentrations of NO2, PM10 and PM2.5 were 0.75 (0.19-0.89), 0.39 (0.23-0.66) and 0.29 (0.22-0.81) for 112,971 (13 study areas), 69,591 (7) and 28,519(4) addresses respectively. The median Pearson R correlation coefficients (range) between DM estimates and ESCAPE measurements were of 0.74(0.09-0.86) for NO2; 0.58 (0.36-0.88) for PM10 and 0.58 (0.39-0.66) for PM2.5. Conclusions: LUR and dispersion model estimates correlated on average well for NO2 but only moderately for PM10 and PM2.5, with large variability across areas. DM predicted a moderate to large proportion of the measured variation for NO2 but less for PM10 and PM2.5.
  •  
3.
  • Jacquemin, Benedicte, et al. (författare)
  • Ambient Air Pollution and Adult Asthma Incidence in Six European Cohorts (ESCAPE)
  • 2015
  • Ingår i: Journal of Environmental Health Perspectives. - : Environmental Health Perspectives. - 0091-6765 .- 1552-9924. ; 123:6, s. 613-621
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Short-term exposure to air pollution has adverse effects among patients with asthma, but whether long-term exposure to air pollution is a cause of adult-onset asthma is unclear. OBJECTIVE: We aimed to investigate the association between air pollution and adult onset asthma. METHODS: Asthma incidence was prospectively assessed in six European cohorts. Exposures studied were annual average concentrations at home addresses for nitrogen oxides assessed for 23,704 participants (including 1,257 incident cases) and particulate matter (PM) assessed for 17,909 participants through ESCAPE land-use regression models and traffic exposure indicators. Meta-analyses of cohort-specific logistic regression on asthma incidence were performed. Models were adjusted for age, sex, overweight, education, and smoking and included city/area within each cohort as a random effect. RESULTS: In this longitudinal analysis, asthma incidence was positively, but not significantly, associated with all exposure metrics, except for PMcoarse. Positive associations of borderline significance were observed for nitrogen dioxide [adjusted odds ratio (OR) = 1.10; 95% CI: 0.99, 1.21 per 10 mu g/m(3); p = 0.10] and nitrogen oxides (adjusted OR = 1.04; 95% CI: 0.99, 1.08 per 20 mu g/m(3); p = 0.08). Nonsignificant positive associations were estimated for PM10 (adjusted OR = 1.04; 95% CI: 0.88, 1.23 per 10 mu g/m(3)), PM2.5 (adjusted OR = 1.04; 95% CI: 0.88, 1.23 per 5 mu g/m(3)), PM2.5absorbance (adjusted OR = 1.06; 95% CI: 0.95, 1.19 per 10(-5)/m), traffic load (adjusted OR = 1.10; 95% CI: 0.93, 1.30 per 4 million vehicles x meters/day on major roads in a 100-m buffer), and traffic intensity (adjusted OR = 1.10; 95% CI: 0.93, 1.30 per 5,000 vehicles/day on the nearest road). A nonsignificant negative association was estimated for PMcoarse (adjusted OR = 0.98; 95% CI: 0.87, 1.14 per 5 mu g/m(3)). CONCLUSIONS: Results suggest a deleterious effect of ambient air pollution on asthma incidence in adults. Further research with improved personal-level exposure assessment (vs. residential exposure assessment only) and phenotypic characterization is needed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy