SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kuhry Peter) ;conttype:(refereed)"

Sökning: WFRF:(Kuhry Peter) > Refereegranskat

  • Resultat 1-10 av 72
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abbott, Benjamin W., et al. (författare)
  • Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire : an expert assessment
  • 2016
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 11:3
  • Tidskriftsartikel (refereegranskat)abstract
    • As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%-85% of permafrost carbon release can still be avoided if human emissions are actively reduced.
  •  
2.
  • Sannel, A. Britta K., et al. (författare)
  • Permafrost Warming in a Subarctic Peatland - Which Meteorological Controls are Most Important?
  • 2016
  • Ingår i: Permafrost and Periglacial Processes. - : Wiley. - 1045-6740 .- 1099-1530. ; 27:2, s. 177-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Because climate change can affect the carbon balance and hydrology in permafrost peatlands, a better understanding of their sensitivity to changes in temperature and precipitation is needed. In Tavvavuoma, northernmost Sweden, meteorological parameters and ground thermal properties have been monitored in a peat plateau from 2006 to 2013. During this time period, the air temperature record shows no warming trend, and the late-season thaw depth has been relatively stable at around 55-60cm. Meanwhile, the mean annual ground temperature at 1m depth has increased by 0.06 degrees C/yr and at 2-5m depth the permafrost is currently warmer than -0.3 degrees C. Statistical analyses suggest that interannual changes in thaw depth and ground temperatures are affected by different meteorological factors. Summer air temperatures and annual thawing degree-days control thaw depth (p0.05), whereas winter precipitation/snow depth affects ground temperatures (p0.1). The permafrost in this peat plateau is likely relict and not in equilibrium with current climatic conditions. Since the early 20(th) century, there has been a regional increase in air temperature and snow depth. If the ongoing permafrost warming in Tavvavuoma is a result of these long-term trends, short-term variability in meteorological parameters can still have an impact on the rate of permafrost degradation, but unless pronounced climate cooling occurs, thawing of the peat plateau is inevitable.
  •  
3.
  • Stimmler, Peter, et al. (författare)
  • Pan-Arctic soil element bioavailability estimations
  • 2023
  • Ingår i: Earth System Science Data. - : Copernicus GmbH. - 1866-3508 .- 1866-3516. ; 15:3, s. 1059-1075
  • Tidskriftsartikel (refereegranskat)abstract
    • Arctic soils store large amounts of organic carbon and other elements, such as amorphous silicon, silicon, calcium, iron, aluminum, and phosphorous. Global warming is projected to be most pronounced in the Arctic, leading to thawing permafrost which, in turn, changes the soil element availability. To project how biogeochemical cycling in Arctic ecosystems will be affected by climate change, there is a need for data on element availability. Here, we analyzed the amorphous silicon (ASi) content as a solid fraction of the soils as well as Mehlich III extractions for the bioavailability of silicon (Si), calcium (Ca), iron (Fe), phosphorus (P), and aluminum (Al) from 574 soil samples from the circumpolar Arctic region. We show large differences in the ASi fraction and in Si, Ca, Fe, Al, and P availability among different lithologies and Arctic regions. We summarize these data in pan-Arctic maps of the ASi fraction and available Si, Ca, Fe, P, and Al concentrations, focusing on the top 100 cm of Arctic soil. Furthermore, we provide element availability values for the organic and mineral layers of the seasonally thawing active layer as well as for the uppermost permafrost layer. Our spatially explicit data on differences in the availability of elements between the different lithological classes and regions now and in the future will improve Arctic Earth system models for estimating current and future carbon and nutrient feedbacks under climate change (, Schaller and Goeckede, 2022).
  •  
4.
  • Walker, Tony R., et al. (författare)
  • Multiple indicators of human impacts on the environment in the Pechora Basin, north-eastern European Russia
  • 2009
  • Ingår i: Ecological Indicators. - : Elsevier BV. - 1470-160X .- 1872-7034. ; 9:4, s. 765-779
  • Tidskriftsartikel (refereegranskat)abstract
    • The Pechora Region (PR) has extensive natural resources supporting forestry, oil and gas industries. The objective of this integrated study was to identify if local and long range pollution and biodiversity impacts were detectable on a regional scale using multi-indicators by selecting paired sites, close to industrial/forestry activities and in 'reference' areas (remote from any industrial centers, settlements or commercial activities). Chemistry of lichens, topsoil, lake water and sediments, plus diversity of lichens, birds and aquatic indicators along with landscape analysis were measured at eight sites in the PR to assess local impacts of oil/gas and forestry operations. Furthermore, an analysis of water and sediment chemistry was made at river stations and sites within the Pechora Delta. Local areas around industrial towns of Vorkuta and Usinsk showed increased pollution and decreased biodiversity. Among remote areas, subtle changes in pollution and biodiversity were detected close to oil/gas operations on the Kolva and Ortina Rivers, indicating early signs of environmental impact. Delta analyses showed limited impacts and most other sites remained unmodified reflecting low ecological impacts. Changes in forest landscape structure over large areas were apparently too small to cause significant negative impacts on bird diversity. This was the first attempt showing how multi-indicators can be used over broad spatial scales to assess environmental impacts in the PR. 
  •  
5.
  • Alfredsson, Hanna, et al. (författare)
  • Amorphous silica pools in permafrost soils of the Central Canadian Arctic and the potential impact of climate change
  • 2015
  • Ingår i: Biogeochemistry. - : Springer Science and Business Media LLC. - 0168-2563 .- 1573-515X. ; 124:1-3, s. 441-459
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated the distribution, storage and landscape partitioning of soil amorphous silica (ASi) in a central Canadian region dominated by tundra and peatlands to provide a first estimate of the amount of ASi stored in Arctic permafrost ecosystems. We hypothesize that, similar to soil organic matter, Arctic soils store large amounts of ASi which may be affected by projected climate changes and associated changes in permafrost regimes. Average soil ASi storage (top 1 m) ranged between 9600 and 83,500 kg SiO2 ha(-1) among different land-cover types. Lichen tundra contained the lowest amounts of ASi while no significant differences were found in ASi storage among other land-cover types. Clear differences were observed between ASi storage allocated into the top organic versus the mineral horizon of soils. Bog peatlands, fen peatlands and wet shrub tundra stored between 7090 and 45,400 kg SiO2 ha(-1) in the top organic horizon, while the corresponding storage in lichen tundra, moist shrub- and dry shrub tundra only amounted to 1500-1760 kg SiO2 ha(-1). Diatoms and phytoliths are important components of ASi storage in the top organic horizon of peatlands and shrub tundra systems, while it appears to be a negligible component of ASi storage in the mineral horizon of shrub tundra classes. ASi concentrations decrease with depth in the soil profile for fen peatlands and all shrub tundra classes, suggesting recycling of ASi, whereas bog peatlands appeared to act as sinks retaining stored ASi on millennial time scales. Our results provide a conceptual framework to assess the potential effects of climate change impacts on terrestrial Si cycling in the Arctic. We believe that ASi stored in peatlands are particularly sensitive to climate change, because a larger fraction of the ASi pool is stored in perennially frozen ground compared to shrub tundra systems. A likely outcome of climate warming and permafrost thaw could be mobilization of previously frozen ASi, altered soil storage of biogenically derived ASi and an increased Si flux to the Arctic Ocean.
  •  
6.
  • Alfredsson, H., et al. (författare)
  • Estimated storage of amorphous silica in soils of the circum-Arctic tundra region
  • 2016
  • Ingår i: Global Biogeochemical Cycles. - 0886-6236 .- 1944-9224. ; 30:3, s. 479-500
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated the vertical distribution, storage, landscape partitioning, and spatial variability of soil amorphous silica (ASi) at four different sites underlain by continuous permafrost and representative of mountainous and lowland tundra, in the circum-Arctic region. Based on a larger set of data, we present the first estimate of the ASi soil reservoir (0-1 m depth) in circum-Arctic tundra terrain. At all sites, the vertical distribution of ASi concentrations followed the pattern of either (1) declining concentrations with depth (most common) or (2) increasing/maximum concentrations with depth. Our results suggest that a set of processes, including biological control, solifluction and other slope processes, cryoturbation, and formation of inorganic precipitates influence vertical distributions of ASi in permafrost terrain, with the capacity to retain stored ASi on millennial timescales. At the four study sites, areal ASi storage (0-1 m) is generally higher in graminoid tundra compared to wetlands. Our circum-Arctic upscaling estimates, based on both vegetation and soil classification separately, suggest a storage amounting to 219 ± 28 and 274 ± 33 Tmol Si, respectively, of which at least 30% is stored in permafrost. This estimate would account for about 3% of the global soil ASi storage while occupying an equal portion of the global land area. This result does not support the hypothesis that the circum-Arctic tundra soil ASi reservoir contains relatively higher amounts of ASi than other biomes globally as demonstrated for carbon. Nevertheless, climate warming has the potential to significantly alter ASi storage and terrestrial Si cycling in the Arctic.
  •  
7.
  • Andersson, Rina Argelia, et al. (författare)
  • Elemental and isotopic carbon and nitrogen records of organic matter accumulation in a Holocene permafrost peat sequence in the East European Russian Arctic
  • 2012
  • Ingår i: Journal of Quaternary Science. - : Wiley. - 0267-8179 .- 1099-1417. ; 27:6, s. 545-552
  • Tidskriftsartikel (refereegranskat)abstract
    • A peat deposit from the East European Russian Arctic, spanning nearly 10 000 years, was investigated to study soil organic matter degradation using analyses of bulk elemental and stable isotopic compositions and plant macrofossil remains. The peat accumulated initially in a wet fen that was transformed into a peat plateau bog following aggradation of permafrost in the late Holocene (similar to 2500 cal a BP). Total organic carbon and total nitrogen (N) concentrations are higher in the fen peat than in the moss-dominated bog peat layers. Layers in the sequence that have lower concentrations of total hydrogen (H) are associated with degraded vascular plant residues. C/N and H/C atomic ratios indicate better preservation of organic matter in peat material dominated by bryophytes as opposed to vascular plants. The presence of permafrost in the peat plateau stage and water-saturated conditions at the bottom of the fen stage appear to lead to better preservation of organic plant material. delta 15N values suggest N isotopic fractionation was driven primarily by microbial decomposition whereas differences in delta 13C values appear to reflect mainly changes in plant assemblages. Positive shifts in both delta 15N and delta 13C values coincide with a local change to drier conditions as a result of the onset of permafrost and frost heave of the peat surface. This pattern suggests that permafrost aggradation not only resulted in changes in vegetation but also aerated the underlying fen peat, which enhanced microbial denitrification, causing the observed 15N-enrichment.
  •  
8.
  • Andersson, Rina Argelia, et al. (författare)
  • Impacts of paleohydrological changes on n-alkane biomarker compositions of a Holocene peat sequence in the eastern European Russian Arctic
  • 2011
  • Ingår i: Organic Geochemistry. - : Elsevier. - 0146-6380 .- 1873-5290. ; 42:9, s. 1065-1075
  • Tidskriftsartikel (refereegranskat)abstract
    • Coupled analyses of n-alkane biomarkers and plant macrofossils from a peat plateau deposit in the northeast European Russian Arctic were carried out to assess the effects of past hydrology on the molecular contributions of plants to the peat. The n-alkane biomarkers accumulated over 9.6 kyr of local paleohydrological changes in this complex peat profile in which a succession of vegetation changes occurred during a transition from a wet fen to a relatively dry peat plateau bog. This study shows that the contribution of the n-C31 alkane from rootlets to peat layers rich in fine and dark roots is important. The results further indicate that the n-alkanePaqandn-C23/n-C29 biomarker proxies that have been useful to reconstruct past water table levels in many peat deposits can be misleading when the contributions of Betulaand Sphagnum fuscum to the peat are large. Under these conditions, the C23/(C27+ C31) n-alkane ratio seems to correct for the presence of BetulaandS. fuscum and provides a better description for the relative amounts of moisture. The average chain length (ACL) n-alkane proxy also appears to be a good paleohydrology proxy in having larger values during dry and cold conditions in this Arctic bog setting.
  •  
9.
  • Bartsch, Annett, et al. (författare)
  • Can C-band synthetic aperture radar be used to estimate soil organic carbon storage in tundra?
  • 2016
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 13:19, s. 5453-5470
  • Tidskriftsartikel (refereegranskat)abstract
    • A new approach for the estimation of soil organic carbon (SOC) pools north of the tree line has been developed based on synthetic aperture radar (SAR; ENVISAT Advanced SAR Global Monitoring mode) data. SOC values are directly determined from backscatter values instead of upscaling using land cover or soil classes. The multi-mode capability of SAR allows application across scales. It can be shown that measurements in C band under frozen conditions represent vegetation and surface structure properties which relate to soil properties, specifically SOC. It is estimated that at least 29 Pg C is stored in the upper 30 cm of soils north of the tree line. This is approximately 25% less than stocks derived from the soil-map-based Northern Circumpolar Soil Carbon Database (NCSCD). The total stored carbon is underestimated since the established empirical relationship is not valid for peatlands or strongly cryoturbated soils. The approach does, however, provide the first spatially consistent account of soil organic carbon across the Arctic. Furthermore, it could be shown that values obtained from 1 km resolution SAR correspond to accounts based on a high spatial resolution (2 m) land cover map over a study area of about 7 x 7 km in NE Siberia. The approach can be also potentially transferred to medium-resolution C-band SAR data such as ENVISAT ASAR Wide Swath with similar to 120m resolution but it is in general limited to regions without woody vegetation. Global Monitoring-mode-derived SOC increases with unfrozen period length. This indicates the importance of this parameter for modelling of the spatial distribution of soil organic carbon storage.
  •  
10.
  • Chadburn, Sarah E., et al. (författare)
  • Carbon stocks and fluxes in the high latitudes : using site-level data to evaluate Earth system models
  • 2017
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 14:22, s. 5143-5169
  • Tidskriftsartikel (refereegranskat)abstract
    • It is important that climate models can accurately simulate the terrestrial carbon cycle in the Arctic due to the large and potentially labile carbon stocks found in permafrost-affected environments, which can lead to a positive climate feedback, along with the possibility of future carbon sinks from northward expansion of vegetation under climate warming. Here we evaluate the simulation of tundra carbon stocks and fluxes in three land surface schemes that each form part of major Earth system models (JSBACH, Germany; JULES, UK; ORCHIDEE, France). We use a site-level approach in which comprehensive, high-frequency datasets allow us to disentangle the importance of different processes. The models have improved physical permafrost processes and there is a reasonable correspondence between the simulated and measured physical variables, including soil temperature, soil moisture and snow. We show that if the models simulate the correct leaf area index (LAI), the standard C3 photosynthesis schemes produce the correct order of magnitude of carbon fluxes. Therefore, simulating the correct LAI is one of the first priorities. LAI depends quite strongly on climatic variables alone, as we see by the fact that the dynamic vegetation model can simulate most of the differences in LAI between sites, based almost entirely on climate inputs. However, we also identify an influence from nutrient limitation as the LAI becomes too large at some of the more nutrient-limited sites. We conclude that including moss as well as vascular plants is of primary importance to the carbon budget, as moss contributes a large fraction to the seasonal CO2 flux in nutrient-limited conditions. Moss photosynthetic activity can be strongly influenced by the moisture content of moss, and the carbon uptake can be significantly different from vascular plants with a similar LAI. The soil carbon stocks depend strongly on the rate of input of carbon from the vegetation to the soil, and our analysis suggests that an improved simulation of photosynthesis would also lead to an improved simulation of soil carbon stocks. However, the stocks are also influenced by soil carbon burial (e.g. through cryoturbation) and the rate of heterotrophic respiration, which depends on the soil physical state. More detailed below-ground measurements are needed to fully evaluate biological and physical soil processes. Furthermore, even if these processes are well modelled, the soil carbon profiles cannot resemble peat layers as peat accumulation processes are not represented in the models. Thus, we identify three priority areas for model development: (1) dynamic vegetation including (a) climate and (b) nutrient limitation effects; (2) adding moss as a plant functional type; and an (3) improved vertical profile of soil carbon including peat processes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 72
Typ av publikation
tidskriftsartikel (70)
forskningsöversikt (2)
Typ av innehåll
Författare/redaktör
Kuhry, Peter (72)
Hugelius, Gustaf (40)
Palmtag, Juri (9)
Sannel, A. Britta K. (9)
Elberling, Bo (7)
Grosse, G. (6)
visa fler...
Schuur, Edward A. G. (5)
Romanovsky, V. E. (5)
Richter, Andreas (5)
Holzkämper, Steffen (5)
McGuire, A. David (4)
Virtanen, Tarmo (4)
Strauss, Jens (4)
Wild, Birgit (4)
Grosse, Guido (4)
Hugelius, Gustaf, 19 ... (3)
Fuchs, Matthias (3)
Richter, A. (3)
Crill, Patrick (3)
Routh, Joyanto (3)
Jones, Miriam C. (3)
Siewert, Matthias Be ... (3)
Palmtag, Juri, 1980- (3)
Blok, Daan (3)
Lawrence, D.M. (3)
Christiansen, Hanne ... (2)
Abbott, Benjamin W. (2)
Turetsky, Merritt R. (2)
Christensen, Torben ... (2)
Dorrepaal, Ellen (2)
Keuper, Frida (2)
Macdonald, Robie W. (2)
Olefeldt, David (2)
Strauss, J. (2)
Bartsch, Annett (2)
Ciais, P. (2)
Rinke, A. (2)
Beer, Christian (2)
Andersson, Rina Arge ... (2)
Meyers, Philip (2)
Solovieva, Nadia (2)
Shibistova, O. (2)
Christensen, Torben (2)
Luoto, Tomi P. (2)
Finkelstein, Sarah A ... (2)
Loader, Neil J. (2)
Treat, Claire C. (2)
Faucherre, Samuel (2)
Sannel, Britta (2)
Yu, Zicheng (2)
visa färre...
Lärosäte
Stockholms universitet (71)
Lunds universitet (15)
Umeå universitet (7)
Göteborgs universitet (5)
Linköpings universitet (3)
Sveriges Lantbruksuniversitet (3)
visa fler...
Uppsala universitet (1)
Linnéuniversitetet (1)
visa färre...
Språk
Engelska (72)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (66)
Lantbruksvetenskap (6)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy