SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kuhry Peter) ;hsvcat:4"

Sökning: WFRF:(Kuhry Peter) > Lantbruksvetenskap

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abbott, Benjamin W., et al. (författare)
  • Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire : an expert assessment
  • 2016
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 11:3
  • Tidskriftsartikel (refereegranskat)abstract
    • As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%-85% of permafrost carbon release can still be avoided if human emissions are actively reduced.
  •  
2.
  • Kuhry, Peter, et al. (författare)
  • Soil organic carbon stocks in the high mountain permafrost zone of the semi-arid Central Andes (Cordillera Frontal, Argentina)
  • 2022
  • Ingår i: Catena (Cremlingen. Print). - : Elsevier BV. - 0341-8162 .- 1872-6887. ; 217
  • Tidskriftsartikel (refereegranskat)abstract
    • This study presents the first detailed soil organic carbon (SOC) inventory for a high mountain permafrost zone in the semi-arid Central Andes of South America. We describe plant cover and soil profiles at 31 sites representing the main land cover and landform types in the Veguitas catchment (Cordillera Frontal, Argentina), which ranges in elevation from c. 3000 to 5500 m. The vegetated area with soil development is largely confined to altitudes of < 3650 m and represents only 8.2% of the total catchment area. Mean SOC 0-100 cm storage for the vegetated portion of the catchment is 3.62 kg C m(-2), which is reduced to 0.33 kg C m(-2) if we consider negligible SOC stocks in the extensive bare ground and glaciated areas at higher elevations. Hotspots of SOC storage are wet meadow areas, with peat deposits up to 102 cm deep and a maximum observed total SOC storage of 53.07 kg C m(-2). These wet meadow areas, however, occupy only 0.11% of the total catchment area and their contribution to mean SOC storage is limited. Among soils at well-drained sites, highest mean SOC 0-100 cm storage is found on backslope positions of moraines that predate the Last Glacial Maximum (6.87 kg C m(-2)). Only 2% of all SOC stocks in the catchment are found in permafrost terrain and none are located in the permafrost layer itself. The main ecoclimatic control on SOC storage is plant cover, with vegetation limits being sensitive to ambient tem-perature. Projected increases in temperatures will not remobilize any frozen SOC stocks but will likely result in an upward shift of the upper vegetation belt with soil development creating new areas of phytomass carbon and SOC storage. The area is expected to represent a net C sink and thus a negative feedback on future global warming.
  •  
3.
  • Keuper, Frida, et al. (författare)
  • Carbon loss from northern circumpolar permafrost soils amplified by rhizosphere priming
  • 2020
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 13, s. 560-565
  • Tidskriftsartikel (refereegranskat)abstract
    • As global temperatures continue to rise, a key uncertainty of climate projections is the microbial decomposition of vast organic carbon stocks in thawing permafrost soils. Decomposition rates can accelerate up to fourfold in the presence of plant roots, and this mechanism-termed the rhizosphere priming effect-may be especially relevant to thawing permafrost soils as rising temperatures also stimulate plant productivity in the Arctic. However, priming is currently not explicitly included in any model projections of future carbon losses from the permafrost area. Here, we combine high-resolution spatial and depth-resolved datasets of key plant and permafrost properties with empirical relationships of priming effects from living plants on microbial respiration. We show that rhizosphere priming amplifies overall soil respiration in permafrost-affected ecosystems by similar to 12%, which translates to a priming-induced absolute loss of similar to 40 Pg soil carbon from the northern permafrost area by 2100. Our findings highlight the need to include fine-scale ecological interactions in order to accurately predict large-scale greenhouse gas emissions, and suggest even tighter restrictions on the estimated 200 Pg anthropogenic carbon emission budget to keep global warming below 1.5 degrees C.
  •  
4.
  • Kuhry, Peter, et al. (författare)
  • Lability classification of soil organic matter in the northern permafrost region
  • 2020
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 17:2, s. 361-379
  • Tidskriftsartikel (refereegranskat)abstract
    • The large stocks of soil organic carbon (SOC) in soils and deposits of the northern permafrost region are sensitive to global warming and permafrost thawing. The potential release of this carbon (C) as greenhouse gases to the atmosphere does not only depend on the total quantity of soil organic matter (SOM) affected by warming and thawing, but it also depends on its lability (i.e., the rate at which it will decay). In this study we develop a simple and robust classification scheme of SOM lability for the main types of soils and deposits in the northern permafrost region. The classification is based on widely available soil geochemical parameters and landscape unit classes, which makes it useful for upscaling to the entire northern permafrost region. We have analyzed the relationship between C content and C-CO2 production rates of soil samples in two different types of laboratory incubation experiments. In one experiment, ca. 240 soil samples from four study areas were incubated using the same protocol (at 5 degrees C, aerobically) over a period of 1 year. Here we present C release rates measured on day 343 of incubation. These long-term results are compared to those obtained from short-term incubations of ca. 1000 samples (at 12 degrees C, aerobically) from an additional three study areas. In these experiments, C-CO2 production rates were measured over the first 4 d of incubation. We have focused our analyses on the relationship between C-CO2 production per gram dry weight per day (mu gC-CO2 gdw(-1) d(-1)) and C content (%C of dry weight) in the samples, but we show that relationships are consistent when using C = N ratios or different production units such as mu gC per gram soil C per day (mu gC-CO2 gC(-1) d(-1)) or per cm(3) of soil per day (mu gC-CO2 cm(-3) d(-1)). C content of the samples is positively correlated to C-CO2 production rates but explains less than 50% of the observed variability when the full datasets are considered. A partitioning of the data into landscape units greatly reduces variance and provides consistent results between incubation experiments. These results indicate that relative SOM lability decreases in the order of Late Holocene eolian deposits to alluvial deposits and mineral soils (including peaty wetlands) to Pleistocene yedoma deposits to C-enriched pockets in cryoturbated soils to peat deposits. Thus, three of the most important SOC storage classes in the northern permafrost region (yedoma, cryoturbated soils and peatlands) show low relative SOM lability. Previous research has suggested that SOM in these pools is relatively undecomposed, and the reasons for the observed low rates of decomposition in our experiments need urgent attention if we want to better constrain the magnitude of the thawing permafrost carbon feedback on global warming.
  •  
5.
  • Pluchon, Nathalie, et al. (författare)
  • Recent paludification rates and effects on total ecosystem carbon storage in two boreal peatlands of Northeast European Russia
  • 2014
  • Ingår i: The Holocene. - : SAGE Publications. - 0959-6836 .- 1477-0911. ; 24:9, s. 1126-1136
  • Tidskriftsartikel (refereegranskat)abstract
    • Forest and peatland ecosystems constitute the two major carbon pools in the boreal region. We assess the evolution in total storage and partitioning of ecosystem carbon following recent paludification of forest into peatland at two sites in Northeast European Russia. Based on radiocarbon dating of basal peat and quantification of total ecosystem carbon storage, our results show that paludification rates and its consequences for carbon storage vary significantly between sites. A peatland expanding on ground with steeper slopes has experienced a slow lateral advance in recent times, about 2.6 m on average per century, whereas a peatland in flatter terrain has expanded much more rapidly, about 35 m on average per century. The total ecosystem carbon storage (sum of phytomass, top soil organics or peat, and 30 cm of underlying mineral soil) showed a long-term trend toward increased ecosystem C storage following the replacement of forest (mean value = 20.8 kg C/m(2), range = 13.0-43.4 kg C/m(2)) by peatland (>100 kg C/m(2) in the deepest peat deposits). However, the transitional stage in which the forest is replaced by the margin of the peatland results in a short-term decrease of carbon stored in the ecosystem with a mean loss of 7.5 kg C/m(2). After the initiation of a peatland through paludification, a period of decades to centuries of peat accumulation is needed to compensate for the initial loss of carbon. In the short term, an intensification of the paludification process could lead to a loss of carbon stored in the boreal region.
  •  
6.
  • Routh, Joyanto, et al. (författare)
  • Organic carbon characteristics in Swedish forest soil trace post-depositional carbon dynamics
  • 2016
  • Ingår i: European Journal of Soil Science. - : WILEY-BLACKWELL. - 1351-0754 .- 1365-2389. ; 67:4, s. 492-503
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated soil organic carbon (SOC) characteristics in three forests along a north-south transect in Sweden where these forest types cover about 69% of the landscape. There was variation in C-14 ages, and the median ages ranged from about 25 to amp;gt; 2500 cal BP in SOC. Although total SOC and nitrogen (N) contents decreased, stable carbon isotope and humification indices increased with depth. These progressive changes with depth and age were related to degradation. The delta C-13 values and specific biomarkers indicated that organic carbon was primarily from C-3 plants. Biomarkers were effective in distinguishing OC input from specific sources (i.e. angiosperms, gymnosperms and grasses). A sharp decrease in biomarkers with depth indicated degradation of OC in the upper soil horizon, and limited contribution in the subsoil towards the stabilization of SOC. The sharp decrease in carbon stocks and C-14 age in the soil OC pool with increasing soil depth, and quite large values for the percentage of modern carbon, suggested a decrease in SOC pools. Overall, these results showed that carbon sequestration in high latitude forests was small, and their role as potential carbon sinks needs to be reassessed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6
Typ av publikation
tidskriftsartikel (6)
Typ av innehåll
refereegranskat (6)
Författare/redaktör
Dorrepaal, Ellen (2)
Abbott, Benjamin W. (1)
Jones, Jeremy B. (1)
Schuur, Edward A. G. (1)
Chapin, F. Stuart, I ... (1)
Bowden, William B. (1)
visa fler...
Bret-Harte, M. Syndo ... (1)
Epstein, Howard E. (1)
Flannigan, Michael D ... (1)
Harms, Tamara K. (1)
Hollingsworth, Teres ... (1)
Mack, Michelle C. (1)
McGuire, A. David (1)
Natali, Susan M. (1)
Rocha, Adrian V. (1)
Tank, Suzanne E. (1)
Turetsky, Merritt R. (1)
Vonk, Jorien E. (1)
Wickland, Kimberly P ... (1)
Aiken, George R. (1)
Alexander, Heather D ... (1)
Amon, Rainer M. W. (1)
Benscoter, Brian W. (1)
Bergeron, Yves (1)
Bishop, Kevin (1)
Blarquez, Olivier (1)
Bond-Lamberty, Ben (1)
Breen, Amy L. (1)
Buffam, Ishi (1)
Cai, Yihua (1)
Carcaillet, Christop ... (1)
Carey, Sean K. (1)
Chen, Jing M. (1)
Chen, Han Y. H. (1)
Christensen, Torben ... (1)
Cooper, Lee W. (1)
Cornelissen, J. Hans ... (1)
de Groot, William J. (1)
DeLuca, Thomas H. (1)
Fetcher, Ned (1)
Finlay, Jacques C. (1)
Forbes, Bruce C. (1)
French, Nancy H. F. (1)
Gauthier, Sylvie (1)
Girardin, Martin P. (1)
Goetz, Scott J. (1)
Goldammer, Johann G. (1)
Gough, Laura (1)
Grogan, Paul (1)
Guo, Laodong (1)
visa färre...
Lärosäte
Stockholms universitet (6)
Sveriges Lantbruksuniversitet (3)
Göteborgs universitet (2)
Umeå universitet (2)
Uppsala universitet (1)
Linköpings universitet (1)
visa fler...
Lunds universitet (1)
visa färre...
Språk
Engelska (6)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (6)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy