SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kuhry Peter) ;lar1:(lu)"

Sökning: WFRF:(Kuhry Peter) > Lunds universitet

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alfredsson, Hanna, et al. (författare)
  • Amorphous silica pools in permafrost soils of the Central Canadian Arctic and the potential impact of climate change
  • 2015
  • Ingår i: Biogeochemistry. - : Springer Science and Business Media LLC. - 0168-2563 .- 1573-515X. ; 124:1-3, s. 441-459
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated the distribution, storage and landscape partitioning of soil amorphous silica (ASi) in a central Canadian region dominated by tundra and peatlands to provide a first estimate of the amount of ASi stored in Arctic permafrost ecosystems. We hypothesize that, similar to soil organic matter, Arctic soils store large amounts of ASi which may be affected by projected climate changes and associated changes in permafrost regimes. Average soil ASi storage (top 1 m) ranged between 9600 and 83,500 kg SiO2 ha(-1) among different land-cover types. Lichen tundra contained the lowest amounts of ASi while no significant differences were found in ASi storage among other land-cover types. Clear differences were observed between ASi storage allocated into the top organic versus the mineral horizon of soils. Bog peatlands, fen peatlands and wet shrub tundra stored between 7090 and 45,400 kg SiO2 ha(-1) in the top organic horizon, while the corresponding storage in lichen tundra, moist shrub- and dry shrub tundra only amounted to 1500-1760 kg SiO2 ha(-1). Diatoms and phytoliths are important components of ASi storage in the top organic horizon of peatlands and shrub tundra systems, while it appears to be a negligible component of ASi storage in the mineral horizon of shrub tundra classes. ASi concentrations decrease with depth in the soil profile for fen peatlands and all shrub tundra classes, suggesting recycling of ASi, whereas bog peatlands appeared to act as sinks retaining stored ASi on millennial time scales. Our results provide a conceptual framework to assess the potential effects of climate change impacts on terrestrial Si cycling in the Arctic. We believe that ASi stored in peatlands are particularly sensitive to climate change, because a larger fraction of the ASi pool is stored in perennially frozen ground compared to shrub tundra systems. A likely outcome of climate warming and permafrost thaw could be mobilization of previously frozen ASi, altered soil storage of biogenically derived ASi and an increased Si flux to the Arctic Ocean.
  •  
2.
  • Alfredsson, H., et al. (författare)
  • Estimated storage of amorphous silica in soils of the circum-Arctic tundra region
  • 2016
  • Ingår i: Global Biogeochemical Cycles. - 0886-6236 .- 1944-9224. ; 30:3, s. 479-500
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated the vertical distribution, storage, landscape partitioning, and spatial variability of soil amorphous silica (ASi) at four different sites underlain by continuous permafrost and representative of mountainous and lowland tundra, in the circum-Arctic region. Based on a larger set of data, we present the first estimate of the ASi soil reservoir (0-1 m depth) in circum-Arctic tundra terrain. At all sites, the vertical distribution of ASi concentrations followed the pattern of either (1) declining concentrations with depth (most common) or (2) increasing/maximum concentrations with depth. Our results suggest that a set of processes, including biological control, solifluction and other slope processes, cryoturbation, and formation of inorganic precipitates influence vertical distributions of ASi in permafrost terrain, with the capacity to retain stored ASi on millennial timescales. At the four study sites, areal ASi storage (0-1 m) is generally higher in graminoid tundra compared to wetlands. Our circum-Arctic upscaling estimates, based on both vegetation and soil classification separately, suggest a storage amounting to 219 ± 28 and 274 ± 33 Tmol Si, respectively, of which at least 30% is stored in permafrost. This estimate would account for about 3% of the global soil ASi storage while occupying an equal portion of the global land area. This result does not support the hypothesis that the circum-Arctic tundra soil ASi reservoir contains relatively higher amounts of ASi than other biomes globally as demonstrated for carbon. Nevertheless, climate warming has the potential to significantly alter ASi storage and terrestrial Si cycling in the Arctic.
  •  
3.
  • Chadburn, Sarah E., et al. (författare)
  • Carbon stocks and fluxes in the high latitudes : using site-level data to evaluate Earth system models
  • 2017
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 14:22, s. 5143-5169
  • Tidskriftsartikel (refereegranskat)abstract
    • It is important that climate models can accurately simulate the terrestrial carbon cycle in the Arctic due to the large and potentially labile carbon stocks found in permafrost-affected environments, which can lead to a positive climate feedback, along with the possibility of future carbon sinks from northward expansion of vegetation under climate warming. Here we evaluate the simulation of tundra carbon stocks and fluxes in three land surface schemes that each form part of major Earth system models (JSBACH, Germany; JULES, UK; ORCHIDEE, France). We use a site-level approach in which comprehensive, high-frequency datasets allow us to disentangle the importance of different processes. The models have improved physical permafrost processes and there is a reasonable correspondence between the simulated and measured physical variables, including soil temperature, soil moisture and snow. We show that if the models simulate the correct leaf area index (LAI), the standard C3 photosynthesis schemes produce the correct order of magnitude of carbon fluxes. Therefore, simulating the correct LAI is one of the first priorities. LAI depends quite strongly on climatic variables alone, as we see by the fact that the dynamic vegetation model can simulate most of the differences in LAI between sites, based almost entirely on climate inputs. However, we also identify an influence from nutrient limitation as the LAI becomes too large at some of the more nutrient-limited sites. We conclude that including moss as well as vascular plants is of primary importance to the carbon budget, as moss contributes a large fraction to the seasonal CO2 flux in nutrient-limited conditions. Moss photosynthetic activity can be strongly influenced by the moisture content of moss, and the carbon uptake can be significantly different from vascular plants with a similar LAI. The soil carbon stocks depend strongly on the rate of input of carbon from the vegetation to the soil, and our analysis suggests that an improved simulation of photosynthesis would also lead to an improved simulation of soil carbon stocks. However, the stocks are also influenced by soil carbon burial (e.g. through cryoturbation) and the rate of heterotrophic respiration, which depends on the soil physical state. More detailed below-ground measurements are needed to fully evaluate biological and physical soil processes. Furthermore, even if these processes are well modelled, the soil carbon profiles cannot resemble peat layers as peat accumulation processes are not represented in the models. Thus, we identify three priority areas for model development: (1) dynamic vegetation including (a) climate and (b) nutrient limitation effects; (2) adding moss as a plant functional type; and an (3) improved vertical profile of soil carbon including peat processes.
  •  
4.
  • Faucherre, Samuel, et al. (författare)
  • Short and Long-Term Controls on Active Layer and Permafrost Carbon Turnover Across the Arctic
  • 2018
  • Ingår i: Journal of Geophysical Research - Biogeosciences. - : American Geophysical Union (AGU). - 2169-8953 .- 2169-8961. ; 123:2, s. 372-390
  • Tidskriftsartikel (refereegranskat)abstract
    • Decomposition of soil organic matter (SOM) in permafrost terrain and the production of greenhouse gases is a key factor for understanding climate change-carbon feedbacks. Previous studies have shown that SOM decomposition is mostly controlled by soil temperature, soil moisture, and carbon-nitrogen ratio (C:N). However, focus has generally been on site-specific processes and little is known about variations in the controls on SOM decomposition across Arctic sites. For assessing SOM decomposition, we retrieved 241 samples from 101 soil profiles across three contrasting Arctic regions and incubated them in the laboratory under aerobic conditions. We assessed soil carbon losses (Closs) five times during a 1 year incubation. The incubated material consisted of near-surface active layer (ALNS), subsurface active layer (ALSS), peat, and permafrost samples. Samples were analyzed for carbon, nitrogen, water content, δ13C, δ15N, and dry bulk density (DBD). While no significant differences were observed between total ALSS and permafrost Closs over 1 year incubation (2.3 ± 2.4% and 2.5 ± 1.5% Closs, respectively), ALNS samples showed higher Closs (7.9 ± 4.2%). DBD was the best explanatory parameter for active layer Closs across sites. Additionally, results of permafrost samples show that C:N ratio can be used to characterize initial Closs between sites. This data set on the influence of abiotic parameter on microbial SOM decomposition can improve model simulations of Arctic soil CO2 production by providing representative mean values of CO2 production rates and identifying standard parameters or proxies for upscaling potential CO2 production from site to regional scales.
  •  
5.
  • Gisnås, Kjersti, et al. (författare)
  • Permafrost Map for Norway, Sweden and Finland
  • 2017
  • Ingår i: Permafrost and Periglacial Processes. - : Wiley. - 1045-6740 .- 1099-1530. ; 28:2, s. 359-378
  • Tidskriftsartikel (refereegranskat)abstract
    • A research-based understanding of permafrost distribution at a sufficient spatial resolution is important to meet the demands of science, education and society. We present a new permafrost map for Norway, Sweden and Finland that provides a more detailed and updated description of permafrost distribution in this area than previously available. We implemented the CryoGRID1 model at 1km(2) resolution, forced by a new operationally gridded data-set of daily air temperature and snow cover for Finland, Norway and Sweden. Hundred model realisations were run for each grid cell, based on statistical snow distributions, allowing for the representation of sub-grid variability of ground temperature. The new map indicates a total permafrost area (excluding palsas) of 23 400km(2) in equilibrium with the average 1981-2010 climate, corresponding to 2.2 per cent of the total land area. About 56 per cent of the area is in Norway, 35 per cent in Sweden and 9 per cent in Finland. The model results are thoroughly evaluated, both quantitatively and qualitatively, as a collaboration project including permafrost experts in the three countries. Observed ground temperatures from 25 boreholes are within +/- 2 degrees C of the average modelled grid cell ground temperature, and all are within the range of the modelled ground temperature for the corresponding grid cell. Qualitative model evaluation by field investigators within the three countries shows that the map reproduces the observed lower altitudinal limits of mountain permafrost and the distribution of lowland permafrost.
  •  
6.
  • Kuhry, Peter, et al. (författare)
  • Lability classification of soil organic matter in the northern permafrost region
  • 2020
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 17:2, s. 361-379
  • Tidskriftsartikel (refereegranskat)abstract
    • The large stocks of soil organic carbon (SOC) in soils and deposits of the northern permafrost region are sensitive to global warming and permafrost thawing. The potential release of this carbon (C) as greenhouse gases to the atmosphere does not only depend on the total quantity of soil organic matter (SOM) affected by warming and thawing, but it also depends on its lability (i.e., the rate at which it will decay). In this study we develop a simple and robust classification scheme of SOM lability for the main types of soils and deposits in the northern permafrost region. The classification is based on widely available soil geochemical parameters and landscape unit classes, which makes it useful for upscaling to the entire northern permafrost region. We have analyzed the relationship between C content and C-CO2 production rates of soil samples in two different types of laboratory incubation experiments. In one experiment, ca. 240 soil samples from four study areas were incubated using the same protocol (at 5 degrees C, aerobically) over a period of 1 year. Here we present C release rates measured on day 343 of incubation. These long-term results are compared to those obtained from short-term incubations of ca. 1000 samples (at 12 degrees C, aerobically) from an additional three study areas. In these experiments, C-CO2 production rates were measured over the first 4 d of incubation. We have focused our analyses on the relationship between C-CO2 production per gram dry weight per day (mu gC-CO2 gdw(-1) d(-1)) and C content (%C of dry weight) in the samples, but we show that relationships are consistent when using C = N ratios or different production units such as mu gC per gram soil C per day (mu gC-CO2 gC(-1) d(-1)) or per cm(3) of soil per day (mu gC-CO2 cm(-3) d(-1)). C content of the samples is positively correlated to C-CO2 production rates but explains less than 50% of the observed variability when the full datasets are considered. A partitioning of the data into landscape units greatly reduces variance and provides consistent results between incubation experiments. These results indicate that relative SOM lability decreases in the order of Late Holocene eolian deposits to alluvial deposits and mineral soils (including peaty wetlands) to Pleistocene yedoma deposits to C-enriched pockets in cryoturbated soils to peat deposits. Thus, three of the most important SOC storage classes in the northern permafrost region (yedoma, cryoturbated soils and peatlands) show low relative SOM lability. Previous research has suggested that SOM in these pools is relatively undecomposed, and the reasons for the observed low rates of decomposition in our experiments need urgent attention if we want to better constrain the magnitude of the thawing permafrost carbon feedback on global warming.
  •  
7.
  • Lindgren, Amelie, et al. (författare)
  • GIS-based Maps and Area Estimates of Northern Hemisphere Permafrost Extent during the Last Glacial Maximum
  • 2016
  • Ingår i: Permafrost and Periglacial Processes. - : Wiley. - 1045-6740 .- 1099-1530. ; 27:1, s. 6-16
  • Tidskriftsartikel (refereegranskat)abstract
    • This study presents GIS-based estimates of permafrost extent in the northern circumpolar region during the Last Glacial Maximum (LGM), based on a review of previously published maps and compilations of field evidence in the form of ice-wedge pseudomorphs and relict sand wedges. We focus on field evidence localities in areas thought to have been located along the past southern border of permafrost. We present different reconstructions of permafrost extent, with areal estimates of exposed sea shelf, ice sheets and glaciers, to assess areas of minimum, likely and maximum permafrost extents. The GIS-based mapping of these empirical reconstructions allows us to estimate the likely area of northern permafrost during the LGM as 34.5 million km(2) (which includes 4.7 million km(2) of permafrost on exposed coastal sea shelves). The minimum estimate is 32.7 million km(2) and the maximum estimate is 35.3 million km(2). The extent of LGM permafrost is estimated to have been between c. 9.1 to 11.7 million km(2) larger than its current extent on land (23.6 million km(2)). However, 2.4 million km(2) of the lost land area currently remains as subsea permafrost on the submerged coastal shelves. The LGM permafrost extent in the northern circumpolar region during the LGM was therefore about 33 percent larger than at present. The net loss of northern permafrost since the LGM is due to its disappearance in large parts of Eurasia, which is not compensated for by gains in North America in areas formerly covered by the Laurentide ice sheet.
  •  
8.
  • Loisel, Julie, et al. (författare)
  • A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation
  • 2014
  • Ingår i: The Holocene. - : SAGE Publications. - 0959-6836 .- 1477-0911. ; 24:9, s. 1028-1042
  • Tidskriftsartikel (refereegranskat)abstract
    • Here, we present results from the most comprehensive compilation of Holocene peat soil properties with associated carbon and nitrogen accumulation rates for northern peatlands. Our database consists of 268 peat cores from 215 sites located north of 45 degrees N. It encompasses regions within which peat carbon data have only recently become available, such as the West Siberia Lowlands, the Hudson Bay Lowlands, Kamchatka in Far East Russia, and the Tibetan Plateau. For all northern peatlands, carbon content in organic matter was estimated at 42 +/- 3% (standard deviation) for Sphagnum peat, 51 +/- 2% for non-Sphagnum peat, and at 49 +/- 2% overall. Dry bulk density averaged 0.12 +/- 0.07 g/cm(3), organic matter bulk density averaged 0.11 +/- 0.05 g/cm(3), and total carbon content in peat averaged 47 +/- 6%. In general, large differences were found between Sphagnum and non-Sphagnum peat types in terms of peat properties. Time-weighted peat carbon accumulation rates averaged 23 +/- 2 (standard error of mean) g C/m(2)/yr during the Holocene on the basis of 151 peat cores from 127 sites, with the highest rates of carbon accumulation (25-28 g C/m(2)/yr) recorded during the early Holocene when the climate was warmer than the present. Furthermore, we estimate the northern peatland carbon and nitrogen pools at 436 and 10 gigatons, respectively. The database is publicly available at https://peatlands.lehigh.edu.
  •  
9.
  • Matthes, Heidrun, et al. (författare)
  • Sensitivity of high-resolution Arctic regional climate model projections to different implementations of land surface processes
  • 2012
  • Ingår i: Climatic Change. - : Springer Science and Business Media LLC. - 0165-0009 .- 1573-1480. ; 111:2, s. 197-214
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper discusses the effects of vegetation cover and soil parameters on the climate change projections of a regional climate model over the Arctic domain. Different setups of the land surface model of the regional climate model HIRHAM were realized to analyze differences in the atmospheric circulation caused by (1) the incorporation of freezing/thawing of soil moisture, (2) the consideration of top organic soil horizons typical for the Arctic and (3) a vegetation shift due to a changing climate. The largest direct thermal effect in 2 m air temperature was found for the vegetation shift, which ranged between −1.5 K and 3 K. The inclusion of a freeze/thaw scheme for soil moisture shows equally large sensitivities in spring over cool areas with high soil moisture content. Although the sensitivity signal in 2 m air temperature for the experiments differs in amplitude, all experiments show changes in mean sea level pressure (mslp) and geopotential height (z) throughout the troposphere of similar magnitude (mslp: −2 hPa to 1.5 hPa, z: −15 gpm to 5 gpm). This points to the importance of dynamical feedbacks within the atmosphere-land system. Land and soil processes have a distinct remote influence on large scale atmospheric circulation patterns in addition to their direct, regional effects. The assessment of induced uncertainties due to the changed implementations of land surface processes discussed in this study demonstrates the need to take all those processes for future Arctic climate projections into account, and demonstrates a clear need to include similar implementations in regional and global climate models.
  •  
10.
  • McGuire, A. David, et al. (författare)
  • The carbon budget of the northern cryosphere region
  • 2010
  • Ingår i: Current Opinion in Environmental Sustainability. - : Elsevier BV. - 1877-3435 .- 1877-3443. ; 2:4, s. 231-236
  • Forskningsöversikt (refereegranskat)abstract
    • The northern cryosphere is undergoing substantial warming of permafrost and loss of sea ice. Release of stored carbon to the atmosphere in response to this change has the potential to affect the global climate system. Studies indicate that the northern cryosphere has been not only a substantial sink for atmospheric CO2 in recent decades, but also an important source of CH4 because of emissions from wetlands and lakes. Analyses suggest that the sensitivity of the carbon cycle of the region over the 21st Century is potentially large, but highly uncertain because numerous pathways of response will be affected by warming. Further research should focus on sensitive elements of the carbon cycle such as the consequences of increased fire disturbance, permafrost degradation, and sea ice loss in the northern cryosphere region.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy