SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kuhry Peter) ;pers:(Gentsch N.)"

Sökning: WFRF:(Kuhry Peter) > Gentsch N.

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gentsch, N., et al. (författare)
  • Storage and transformation of organic matter fractions in cryoturbated permafrost soils across the Siberian Arctic
  • 2015
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 12:14, s. 4525-4542
  • Tidskriftsartikel (refereegranskat)abstract
    • In permafrost soils, the temperature regime and the resulting cryogenic processes are important determinants of the storage of organic carbon (OC) and its small-scale spatial variability. For cryoturbated soils, there is a lack of research assessing pedon-scale heterogeneity in OC stocks and the transformation of functionally different organic matter (OM) fractions, such as particulate and mineral-associated OM. Therefore, pedons of 28 Turbels were sampled in 5m wide soil trenches across the Siberian Arctic to calculate OC and total nitrogen (TN) stocks based on digital profile mapping. Density fractionation of soil samples was performed to distinguish between particulate OM (light fraction, LF, < 1.6 g cm(-3)), mineral associated OM (heavy fraction, HF, > 1.6 g cm(-3)), and a mobilizable dissolved pool (mobilizable fraction, MoF). Across all investigated soil profiles, the total OC storage was 20.2 +/- 8.0 kgm(-2) (mean +/- SD) to 100 cm soil depth. Fifty-four percent of this OC was located in the horizons of the active layer (annual summer thawing layer), showing evidence of cryoturbation, and another 35% was present in the upper permafrost. The HF-OC dominated the overall OC stocks (55 %), followed by LF-OC (19% in mineral and 13% in organic horizons). During fractionation, approximately 13% of the OC was released as MoF, which likely represents a readily bioavailable OM pool. Cryogenic activity in combination with cold and wet conditions was the principle mechanism through which large OC stocks were sequestered in the subsoil (16.4 +/- 8.1 kgm(-2); all mineral B, C, and permafrost horizons). Approximately 22% of the subsoil OC stock can be attributed to LF material subducted by cryoturbation, whereas migration of soluble OM along freezing gradients appeared to be the principle source of the dominant HF (63 %) in the subsoil. Despite the unfavourable abiotic conditions, low C/N ratios and high delta C-13 values indicated substantial microbial OM transformation in the subsoil, but this was not reflected in altered LF and HF pool sizes. Partial least-squares regression analyses suggest that OC accumulates in the HF fraction due to co-precipitation with multivalent cations (Al, Fe) and association with poorly crystalline iron oxides and clay minerals. Our data show that, across all permafrost pedons, the mineral-associated OM represents the dominant OM fraction, suggesting that the HF-OC is the OM pool in permafrost soils on which changing soil conditions will have the largest impact.
  •  
2.
  • Keuper, Frida, et al. (författare)
  • Carbon loss from northern circumpolar permafrost soils amplified by rhizosphere priming
  • 2020
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 13, s. 560-565
  • Tidskriftsartikel (refereegranskat)abstract
    • As global temperatures continue to rise, a key uncertainty of climate projections is the microbial decomposition of vast organic carbon stocks in thawing permafrost soils. Decomposition rates can accelerate up to fourfold in the presence of plant roots, and this mechanism-termed the rhizosphere priming effect-may be especially relevant to thawing permafrost soils as rising temperatures also stimulate plant productivity in the Arctic. However, priming is currently not explicitly included in any model projections of future carbon losses from the permafrost area. Here, we combine high-resolution spatial and depth-resolved datasets of key plant and permafrost properties with empirical relationships of priming effects from living plants on microbial respiration. We show that rhizosphere priming amplifies overall soil respiration in permafrost-affected ecosystems by similar to 12%, which translates to a priming-induced absolute loss of similar to 40 Pg soil carbon from the northern permafrost area by 2100. Our findings highlight the need to include fine-scale ecological interactions in order to accurately predict large-scale greenhouse gas emissions, and suggest even tighter restrictions on the estimated 200 Pg anthropogenic carbon emission budget to keep global warming below 1.5 degrees C.
  •  
3.
  • Wild, Birgit, et al. (författare)
  • Amino acid production exceeds plant nitrogen demand in Siberian tundra
  • 2018
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 13:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Arctic plant productivity is often limited by low soil N availability. This has been attributed to slow breakdown of N-containing polymers in litter and soil organic matter (SOM) into smaller, available units, and to shallow plant rooting constrained by permafrost and high soil moisture. Using N-15 pool dilution assays, we here quantified gross amino acid and ammonium production rates in 97 active layer samples from four sites across the Siberian Arctic. We found that amino acid production in organic layers alone exceeded literature-based estimates of maximum plant N uptake 17-fold and therefore reject the hypothesis that arctic plant N limitation results from slow SOM breakdown. High microbial N use efficiency in organic layers rather suggests strong competition of microorganisms and plants in the dominant rooting zone. Deeper horizons showed lower amino acid production rates per volume, but also lower microbial N use efficiency. Permafrost thaw together with soil drainage might facilitate deeper plant rooting and uptake of previously inaccessible subsoil N, and thereby promote plant productivity in arctic ecosystems. We conclude that changes in microbial decomposer activity, microbial N utilization and plant root density with soil depth interactively control N availability for plants in the Arctic.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy