SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kuhry Peter) ;pers:(Kuhry Peter Professor)"

Sökning: WFRF:(Kuhry Peter) > Kuhry Peter Professor

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sannel, A. Britta K., 1968- (författare)
  • Holocene dynamics in subarctic peat plateaus of west-central Canada : Vegetation succession, peat accumulation and permafrost history
  • 2007
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Dynamics in vegetation, permafrost and peat and net carbon accumulation rates throughout the Holocene have been studied in two subarctic peat plateaus of west-central Canada through plant macrofossil analysis, geochemical analyses and AMS radiocarbon dating. Peatland formation at the studied sites began around 6600-5900 cal yr BP as a result of paludification of upland forests. Permafrost aggradation probably occurred 5600-4500 cal yr BP when Sphagnum fuscum became established and rootlet layers started to appear. Alternating layers of Sphagnum fuscum and rootlet peat throughout most of the peat profiles are indicating relatively dry surface conditions, suggesting that permafrost conditions have remained stable since the peat plateau stages were initiated. Local fires have occurred in the peatlands, but most fires did not cause degradation of the permafrost. However, lower peat and net carbon accumulation rates are recorded from rootlet layers containing charcoal. The long-term peat and net carbon accumulation rates for both studied peat profiles are 0,30-0,31 mm/yr and 12,5-12,7 gC/m2yr. Accumulation rates are variable depending on peat plateau stage. Peat accumulation rates are in general 4-5 times higher in S. fuscum than in rootlet stages, and net carbon accumulation rates are 3-4 times higher. Therefore even though Sphagnum peat makes up a majority of the peat profile depth, rootlet peat stages can represent most of the time since the peatland was initiated. The gross stratigraphy and plant macrofossil analyses show that there have been no wet phases, indicating permafrost collapse, since the peat plateau stages were initiated. This suggests that subarctic peat plateaus with alternating Sphagnum fuscum and rootlet peat layers have been acting as long-term net carbon sinks, accumulating carbon which has been incorporated into the permafrost, throughout most of the Holocene. High and stable carbon/nitrogen ratios throughout most of the profiles suggest that decomposition has not occurred in the perennially frozen peat. Since the peat plateaus are characterized by no decay in the permafrost and dry surface conditions, methane emissions are negligible from these ecosystems. In a future warmer climate carbon that has been stored under permafrost conditions can be remobilized. The warming may cause drier surface conditions resulting in increased emissions of carbon dioxide or, alternatively, permafrost collapse resulting in wetter surface conditions and increased methane emissions.
  •  
2.
  • Sannel, A. Britta K., 1968- (författare)
  • Temporal and spatial dynamics in subarctic peat plateaus and thermokarst lakes
  • 2010
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Permafrost peatlands are widespread at high northern latitudes and are important soil organic carbon reservoirs. A future warming in these areas, as suggested by global climate models, can cause thawing and increased ground subsidence (thermokarst), resulting in changes in surface hydrology and ecosystem functioning. The aim of this thesis is to increase our knowledge of temporal and spatial dynamics in subarctic peat plateaus with interspersed thermokarst lakes in order to better understand how these ecosystems respond to climate change. Detailed plant macrofossil and carbon/nitrogen ratio analyses of two peat plateaus located in the continuous and northern discontinuous permafrost zones in west-central Canada show that permafrost conditions have been stable since permafrost developed around 5600–4500 cal yr BP. Peat plateaus act as carbon sinks over time. The lack of wet phases since the plateaus formed, despite several local fires, suggests that this type of peatlands have been negligible as methane sources throughout most of their history, representing a negative net radiative forcing on climate. Thermokarst lakes are common features in peat plateaus across the northern permafrost region. A time-series analysis of aerial photographs and high resolution satellite images in three peat plateau/thermokarst lake complexes along a climatic and permafrost gradient shows that where the mean annual air temperature (MAAT) is below -5ºC and ground temperatures are -2ºC or colder, only minor changes in thermokarst lake extent have occurred from the mid 1970s until the mid 2000s. During the same time interval extensive lake drainage and new lake formation has taken place where the MAAT is ca -3ºC and the ground temperature is close to 0ºC. In a future progressively warmer and wetter climate, permafrost degradation can cause significant impacts on landscape pattern and greenhouse gas exchange also in the vast peat plateaus presently experiencing stable permafrost conditions.
  •  
3.
  • Hamm, Alexandra, 1993- (författare)
  • Permafrost Groundwater Dynamics : Modeling of vertical and lateral flows in the active layer across multiple scales
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Hydrological processes in the Arctic are profoundly influenced by the presence of permanently frozen ground, known as permafrost. Conversely, permafrost is greatly affected by hydrological changes resulting from climate change. Understanding and accurately representing the processes causing permafrost thaw is essential for evaluating the consequences of climate change on permafrost landscapes. In this thesis, I explore how water movements in permafrost landscapes affect the thermal state of the ground and the potential of groundwater flow to transport both heat and solutes. As groundwater is inherently difficult to observe in field experiments, the main method in this thesis is simulating permafrost dynamics with a state-of-the-art physics-based numerical model. Modeling allows investigating these dynamics in both space and time. Results show that an increase in summer rainfall and the associated vertical movement of water in the soil causes opposing effects in the ground temperature response. While enhanced summer rainfall likely leads to a warming in continental permafrost landscapes, in maritime landscapes it may cause a cooling of the ground. This is governed by the effects of rainfall on the hydrothermal properties of the soil and how efficiently it conducts and stores energy.Lateral water movement was found to substantially affect soil moisture distribution along a hillslope underlain by continuous permafrost. Soil moisture is important in the context of the hydrothermal properties within a hillslope but also for the capability of the ground to transport solutes. High soil moisture leads to higher soil hydraulic conductivity and therefore affects how fast solutes such as dissolved organic carbon can be transported with the groundwater. Depending on the vertical location of solutes within the soil, this determines the travel time of solutes in the groundwater towards surface water recipients. Additionally, depending on the rate at which air temperatures will increase in the future, permafrost carbon may experience different modes of lateral transport and residence times in the soil. This thesis highlights the complex interplay between permafrost and hydrology and why it is important to study them as a coupled system in order to fully understand the impacts of climate change on the fate of permafrost. 
  •  
4.
  • Hugelius, Gustaf, 1980- (författare)
  • Quantity and quality of soil organic matter in permafrost terrain
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • High latitude terrestrial ecosystems are considered key components in the global carbon (C) cycle and hold large reservoirs of soil organic carbon (SOC). Much of this is stored as soil organic matter (SOM) in permafrost soils and peat deposits and is vulnerable to remobilization under future global warming. While the large size and potential vulnerability of arctic SOM reservoirs is recognized, detailed knowledge on its landscape partitioning and quality is poor. This thesis describes total storage, landscape partitioning and lability of SOM stored in permafrost areas of Canada and Russia. Detailed studies of SOC partitioning highlight the importance of especially permafrost peatlands, but also of O-horizons in moist tundra soils and cryoturbated soil horizons. A general characterization of SOM in an area of discontinuous permafrost shows that >70% of the SOC in the landscape is stored in SOM with a low degree of decomposition. Projections of permafrost thaw predict that the amount of SOC stored in the active layer of permafrost soils in this area could double by the end of this century. A lateral expansion of current thermokarst lakes by 30 m would expose comparable amounts of SOC to degradation. The results from this thesis have demonstrated the value of high-resolution studies of SOC storage. It is found that peat plateaus, common in the sporadic and discontinuous permafrost zones, store large quantities of labile SOM and may be highly susceptible to permafrost degradation, especially thermokarst, under future climate warming. Large quantities of labile SOM is also stored in cryoturbated soil horizons which may be affected by active layer warming and deepening. The current upscaling methodology is statistically evaluated and recommendations are given for the design of future studies. To accurately predict responses of periglacial C pools to a warming climate detailed studies of SOC storage and partitioning in different periglacial landscapes are needed.
  •  
5.
  • Hugelius, Gustaf, 1980- (författare)
  • Soil organic carbon in permafrost terrain : Total storage, landscape distribution and environmental controls
  • 2009
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • High latitude terrestrial ecosystems are considered key components in the global carbon (C) cycle and hold large reservoirs of soil organic carbon (SOC). To a large degree, this SOC is stored in permafrost soils and peatlands and is vulnerable to remobilization under future global warming and permafrost thawing. Recent studies estimate that soils in permafrost regions store SOC equivalent to ~ 1.5 times the global atmospheric C pool. Ecosystems and soils interact with the atmospheric C pool; photosynthesis sequesters CO2 into SOC whereas microbial decomposition releases C based trace gases (mainly CO2 and CH4). Because of the radiative greenhouse properties of these gases, soil processes also feedback on the global climate system. Recent studies report increases in permafrost temperatures and under future climate change scenarios permafrost environments stand to undergo further changes. As permafrost thaws and surface hydrology changes, there is concern that periglacial tundra and peatland ecosystems will switch from being sinks for atmospheric C into sources, creating a potential for positive feedbacks on global warming. The magnitude of change in C fluxes resulting from climate warming and permafrost thawing depends on the remobilization processes affecting SOC stores, the size of SOC stores that become available for remobilization and the lability of the SOM compounds in these stores. While the large size and potential vulnerability of arctic SOC reservoirs is recognized, detailed knowledge on the landscape partitioning and quality of this SOC is poor. Paper I of this thesis assesses landscape allocation and environmental gradients in SOC storage in the Usa River Basin lowlands of northeastern European Russia. The Russian study area ranges from taiga region with isolated permafrost patches to tundra region with nearly continuous permafrost. Paper II of this thesis investigates total storage, landscape partitioning and quality of soil organic carbon (SOC) in the tundra and continuous permafrost terrain of the Tulemalu Lake area in the Central Canadian Arctic. Databases on soil properties, permafrost, vegetation and modeled climate are compiled and analyzed. Mean SOC storage in the two study regions is 38.3 kg C m-2 for the Usa River Basin and 33.8 kg C m-2 for Tulemalu Lake (for 1m depth in mineral soils and total depth of peat deposits). Both estimates are higher than previous estimates for the same study areas. Multivariate gradient analyses from the Usa Basin show that local vegetation and permafrost are strong predictors of soil chemical properties, overshadowing the effect of climate variables. The results highlight the importance of peatlands, particularly bogs, in bulk SOC storage in all types of permafrost terrain. In the Tulemalu Lake area significant amounts of SOC is stored in cryoturbated soil horizons with C/N ratios indicating a relatively low degree of decomposition. As this pool of cryoturbated SOC is mainly stored in the active layer, no dramatic increases in remobilization are expected following a deepening of the active layer. However, recent studies have demonstrated the importance of SOC storage in deep (>1m) cryoturbated horizons. Perennially frozen peat deposits in permafrost bogs constitute the main vulnerable SOC pool in the investigated regions. Remobilization of this frozen C can occur through gradual but widespread deepening of the active layer with subsequent talik formation, or through more rapid but localized thermokarst erosion.
  •  
6.
  • Kaislahti Tillman, Päivi, 1958- (författare)
  • Holocene climate and environmental change in high latitudes as recorded by stable isotopes in peat deposits
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In this thesis, stable carbon and oxygen isotopes in α-cellulose isolated from Sphagnum fuscum moss remains were used as climate proxies. The main focus was to implement the methods in records from high latitude peatlands in the Northern Hemisphere (west-central Canada and north-eastern European Russia), reconstruct palaeoclimate of the studied regions during the Holocene, and evaluate the compatibility of results with other proxy records, especially tree-ring isotope time-series. The variation of stable carbon and oxygen isotope ratios (δ13C, δ18O) in different moss plant components was investigated and differences between untreated plants and α-cellulose extracts were evaluated. The impact of peat decay on the stable isotope proxies was studied by colorimetric and chemical (C/N) methods. Temperature reconstructions were developed based on the statistically significant relationship between δ13C and modern summer temperature records. Wet/dry periods were derived from a combination of δ18O records, macrofossil analysis, and a peat humification record in west-central Canada. A tentative reconstruction of snow depth in north-eastern European Russian tundra and northern taiga was based on δ18O records. The most promising result of the thesis is that stable carbon isotope variability in α-cellulose isolated from Sphagnum fuscum stems can be used to reconstruct and quantify palaeotemperatures several millennia back in time and to reveal both long-term and rapid climate shifts from peat archives.
  •  
7.
  • Lindgren, Amelie, 1987- (författare)
  • Northern Permafrost Region Soil Carbon Dynamics since the Last Glacial Maximum : a terrestrial component in the glacial to interglacial carbon cycle
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • At the Last Glacial Maximum (LGM), after ~100,000 years of relatively cold temperatures and progressively lower atmospheric carbon dioxide (CO2) concentrations, CO2 levels reached ~180 ppm, which is less than half of what we see today in a much warmer world (~400 ppm). Although much of this increase since the LGM is due to human-induced emissions, about 100 ppm of this increase can be attributed to natural variations seen over glacial to interglacial cycles. The sources for this natural CO2 rise remain unclear despite considerable efforts to constrain its origin. This thesis attempts to describe and quantify the role of soil carbon in this context, with emphasis on the permafrost hypothesis, which states that a shift from glacial to interglacial conditions released permafrost soil carbon to the atmosphere during the deglaciation. We present empirical estimates of the change in the Northern permafrost area between the LGM and present, and the associated soil carbon stock changes. We also partition these soil carbon stock changes at millennial intervals to capture not only the size but the timing of change. We find that the soil carbon stocks north of the Tropics decreased after the LGM to reach a minimum around 10,000 years ago, after which stocks increased to more than compensate for past losses. This may present part of a solution to untangle the marine and atmospheric 13C record, where the marine records suggest that the terrestrial carbon stock has grown since the LGM, while the atmospheric record also indicates terrestrial losses. To estimate the mineral soil carbon stocks, we have relied on vegetation reconstructions. Some of these reconstructions were created with a novel data-driven machine learning approach. This method may facilitate robust vegetation reconstruction when evidence of past conditions is readily available. Results in this thesis highlight the importance of permafrost, loess deposits and peatlands when considering the soil carbon cycle over long time scales.
  •  
8.
  • Palmtag, Juri, 1980- (författare)
  • Landscape partitioning and burial processes of soil organic carbon in contrasting areas of continuous permafrost
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Recent studies have shown that permafrost soils in the northern circumpolar region store almost twice as much carbon as the atmosphere. Since soil organic carbon (SOC) pools have large regional and landscape-level variability, detailed SOC inventories from across the northern permafrost region are needed to assess potential remobilization of SOC with permafrost degradation and to quantify the permafrost carbon-climate feedback on global warming.This thesis provides high-resolution data on SOC storage in five study areas located in undersampled regions of the continuous permafrost zone (Zackenberg in NE Greenland; Shalaurovo and Cherskiy in NE Siberia; Ary-Mas and Logata in Taymyr Peninsula). The emphasis throughout the five different study areas is put on SOC partitioning within the landscape and soil horizon levels as well as on soil forming processes under periglacial conditions. Our results indicate large differences in mean SOC 0–100 cm storage among study areas, ranging from 4.8 to 30.0 kg C m-2, highlighting the need to consider numerous factors as topography, geomorphology, land cover, soil texture, soil moisture, etc. in the assessment of landscape-level and regional SOC stock estimates.In the high arctic mountainous area of Zackenberg, the mean SOC storage is low due to the high proportion of bare grounds. The geomorphology based upscaling resulted in a c. 40% lower estimate compared to a land cover based upscaling (4.8 vs 8.3 kg C m-2, respectively). A landform approach provides a better tool for identifying hotspots of SOC burial in the landscape, which in this area corresponds to alluvial fan deposits in the foothills of the mountains. SOC burial by cryoturbation was much more limited and largely restricted to soils in the lower central valley. In the lowland permafrost study areas of Russia the mean SOC 0–100 cm storage ranged from 14.8 to 30.0 kg C m-2. Cryoturbation is the main burial process of SOC, storing on average c. 30% of the total landscape SOC 0–100 cm in deeper C-enriched pockets in all study areas. In Taymyr Peninsula, the mean SOC storage between the Ary-Mas and Logata study areas differed by c. 40% (14.8 vs 20.8 kg C m-2, respectively). We ascribe this mainly to the finer soil texture in the latter study area. Grain size analyses show that cryoturbation is most prominent in silt loam soils with high coarse silt to very fine sand fractions. However, in profiles and samples not affected by C-enrichment, C concentrations and densities were higher in silt loam soils with higher clay to medium silt fractions.
  •  
9.
  • Palmtag, Juri, 1980- (författare)
  • Storage, landscape partitioning and lability of soil organic matter in permafrost terrain
  • 2015
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Recent estimates indicate that soils in the northern circumpolar permafrost region store substantial amounts of soil organic carbon (SOC). This reservoir has accumulated over 10-100.000 years and is often preserved in a relatively undecomposed state because frozen and often water-logged conditions prevented microbial degradation. Under a projected future climate change caused by rising greenhouse gases, permafrost thaw and rapid decomposition of vulnerable soil organic matter (SOM) could provide a positive feedback on global warming by releasing large amounts of carbon dioxide and/or methane into the atmosphere.SOC pools have large regional and landscape-level variability depending on topographic, ecoclimatic and edaphic factors. As a consequence, large scale maps and even regional data sets describing SOC storage should be taken with caution since they are highly simplified. The purpose of this thesis is to improve our knowledge on quantity and quality of SOM in different areas of continuous permafrost and provide regional high quality data from hitherto under-sampled regions for future assessment of the potential remobilization of SOC under global warming. A special focus is put on SOC partitioning within the landscape and soil horizon levels as well as on soil forming processes under periglacial conditions. Throughout the five different study areas presented in this thesis the landscape mean SOC storage ranges between 8 and 30 kg C m-2, while site differences are in the order of 0 to 80 kg C m-2. Paper I presents new SOC data from contrasting areas in continuous permafrost: a mountainous High Arctic site in Zackenberg (NE Greenland) and lowland sites in Shalaurovo and Cherskiy lower Kolyma (NE Siberia). The main difference is that about 60% of the Zackenberg area is higher elevation terrain with mostly barren ground and very low SOC content, resulting in a much lower landscape-level mean SOC storage compared to the Siberian sites. In addition, Paper II shows that even when comparing two lowland sites located only 150 km apart in Taymyr Peninsula (N Siberia) the mean SOC storage differs with 40% between the areas. This emphasizes that even in lowlands on a regional scale not only different landforms and land cover but also microrelief, soil moisture and especially parent material play a very important role for obtaining more accurate SOC storage estimates.Throughout this thesis a special emphasis is put on understanding the role of cryoturbation for SOC storage. Signs of cryoturbation were observed at all sites and 14C dates show that this process is occurring since at least the early Holocene. On average, 30% of all SOC in the top meter of soil is located in buried C-enriched pockets. The only exception is Zackenberg, with only 12%, where slope processes were the dominant mechanism for burying C-enriched material into deeper layers.We use the weight ratio of Carbon/Nitrogen (C/N) to gain information about SOM decomposability. Generally, all sites show the same trend that the C/N ratio decreases with soil depth. Top organic soil and peat samples have always the highest C/N ratios, suggesting little decomposed SOM. Except for the Zackenberg site, the buried C-enriched pockets have significantly higher C/N ratios than the adjacent mineral subsoil samples. We assume that this C-enriched material was exposed over longer time periods to aerobic decomposition and was therefore relatively well decomposed before it was buried by reactivated slope processes.
  •  
10.
  • Ryner, Maria, 1967- (författare)
  • Past environmental and climate changes in northern Tanzania : Vegetation and lake level variability in Empakaai Crater
  • 2007
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis presents palaeoenvironmental data from equatorial Africa covering two important time intervals; i) the warming period forming the Pleistocene/Holocene transition and ii) the last millennium. The Empakaai Crater, in northern Tanzania contains a lake from where sediment cores, spanning two time-slices 14.8-9.3 ka and 800-2000 AD, have been studied. Palaeoecological and palaeohydrological reconstruction is based on a multitude of proxies from the sediments, representing both catchment environment and the lakes aquatic ecosystem response. Between 14.8 and 10 ka the catchment vegetation and lake hydrology responded to both regional climate changes and local environment, but with different amplitude and frequency, reflecting temporal and spatial lags between the two systems. However, at c 10 ka both lake conditions and catchment vegetation showed drastic changes towards drier conditions. The record covering the last millennium reveals environmental changes related to climate and human activities. The catchment’s vegetation was affected by frequent fires, most probably human induced, while near shore vegetation responded to lake level fluctuation associated with rainfall variability. About 15 km from Empakaai Crater is an extensive abandoned irrigation system, the Engaruka complex, which was in active use between c 1400 AD and 1840 AD. By comparing a number of social and environmental factors potentially influencing the societal development at Engaruka it is shown that wet climate conditions have had positive effects on the societal development but also that dry climate conditions were not always disastrous to the society. The resemblance of the pollen taxa present is strong between the two time slices and pollen representing catchment conditions respond in similar manner in both records. The lake conditions are however very different between the two periods Thus the lake responds to both long and short term changes of variable amplitude, while the catchment vegetation seems to responds to high amplitude, low frequency changes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy