SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kutalik Z) "

Sökning: WFRF:(Kutalik Z)

  • Resultat 1-10 av 66
  • [1]234567Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Graff, M., et al. (författare)
  • Genome-wide physical activity interactions in adiposity. A meta-analysis of 200,452 adults
  • 2017
  • Ingår i: PLoS Genet. - : Public library service. - 1553-7404 .- 1553-7390. ; 13:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Physical activity (PA) may modify the genetic effects that give rise to increased risk of obesity. To identify adiposity loci whose effects are modified by PA, we performed genome-wide interaction meta-analyses of BMI and BMI-adjusted waist circumference and waist-hip ratio from up to 200,452 adults of European (n = 180,423) or other ancestry (n = 20,029). We standardized PA by categorizing it into a dichotomous variable where, on average, 23% of participants were categorized as inactive and 77% as physically active. While we replicate the interaction with PA for the strongest known obesity-risk locus in the FTO gene, of which the effect is attenuated by similar to 30% in physically active individuals compared to inactive individuals, we do not identify additional loci that are sensitive to PA. In additional genome-wide meta-analyses adjusting for PA and interaction with PA, we identify 11 novel adiposity loci, suggesting that accounting for PA or other environmental factors that contribute to variation in adiposity may facilitate gene discovery.
  •  
3.
  • Tidskriftsartikel (refereegranskat)
  •  
4.
  • Kilpelainen, Tuomas O., et al. (författare)
  • Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity
  • 2019
  • Ingår i: Nature Communications. - London : Nature Publishing Group. - 2041-1723 .- 2041-1723. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Many genetic loci affect circulating lipid levels, but it remains unknown whether lifestyle factors, such as physical activity, modify these genetic effects. To identify lipid loci interacting with physical activity, we performed genome-wide analyses of circulating HDL cholesterol, LDL cholesterol, and triglyceride levels in up to 120,979 individuals of European, African, Asian, Hispanic, and Brazilian ancestry, with follow-up of suggestive associations in an additional 131,012 individuals. We find four loci, in/near CLASP1, LHX1, SNTA1, and CNTNAP2, that are associated with circulating lipid levels through interaction with physical activity; higher levels of physical activity enhance the HDL cholesterol-increasing effects of the CLASP1, LHX1, and SNTA1 loci and attenuate the LDL cholesterol- increasing effect of the CNTNAP2 locus. The CLASP1, LHX1, and SNTA1 regions harbor genes linked to muscle function and lipid metabolism. Our results elucidate the role of physical activity interactions in the genetic contribution to blood lipid levels.
  •  
5.
  • Locke, Adam E, et al. (författare)
  • Genetic studies of body mass index yield new insights for obesity biology.
  • 2015
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 518:7538, s. 197-401
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10(-8)), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ∼2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.
  •  
6.
  • Stolk, Lisette, et al. (författare)
  • Meta-analyses identify 13 loci associated with age at menopause and highlight DNA repair and immune pathways
  • 2012
  • Ingår i: Nature Genetics. - 1061-4036 .- 1546-1718. ; 44:3, s. 260-268
  • Tidskriftsartikel (refereegranskat)abstract
    • To newly identify loci for age at natural menopause, we carried out a meta-analysis of 22 genome-wide association studies (GWAS) in 38,968 women of European descent, with replication in up to 14,435 women. In addition to four known loci, we identified 13 loci newly associated with age at natural menopause (at P < 5 × 10(-8)). Candidate genes located at these newly associated loci include genes implicated in DNA repair (EXO1, HELQ, UIMC1, FAM175A, FANCI, TLK1, POLG and PRIM1) and immune function (IL11, NLRP11 and PRRC2A (also known as BAT2)). Gene-set enrichment pathway analyses using the full GWAS data set identified exoDNase, NF-κB signaling and mitochondrial dysfunction as biological processes related to timing of menopause.
  •  
7.
  • Wood, Andrew R, et al. (författare)
  • Defining the role of common variation in the genomic and biological architecture of adult human height.
  • 2014
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1546-1718 .- 1061-4036. ; 46:11, s. 1173-1186
  • Tidskriftsartikel (refereegranskat)abstract
    • Using genome-wide data from 253,288 individuals, we identified 697 variants at genome-wide significance that together explained one-fifth of the heritability for adult height. By testing different numbers of variants in independent studies, we show that the most strongly associated ∼2,000, ∼3,700 and ∼9,500 SNPs explained ∼21%, ∼24% and ∼29% of phenotypic variance. Furthermore, all common variants together captured 60% of heritability. The 697 variants clustered in 423 loci were enriched for genes, pathways and tissue types known to be involved in growth and together implicated genes and pathways not highlighted in earlier efforts, such as signaling by fibroblast growth factors, WNT/β-catenin and chondroitin sulfate-related genes. We identified several genes and pathways not previously connected with human skeletal growth, including mTOR, osteoglycin and binding of hyaluronic acid. Our results indicate a genetic architecture for human height that is characterized by a very large but finite number (thousands) of causal variants.
  •  
8.
  • Chang, H., et al. (författare)
  • The protocadherin 17 gene affects cognition, personality, amygdala structure and function, synapse development and risk of major mood disorders
  • 2018
  • Ingår i: Molecular Psychiatry. - 1359-4184 .- 1476-5578. ; 23:2, s. 400-412
  • Tidskriftsartikel (refereegranskat)abstract
    • Major mood disorders, which primarily include bipolar disorder and major depressive disorder, are the leading cause of disability worldwide and pose a major challenge in identifying robust risk genes. Here, we present data from independent large-scale clinical data sets (including 29 557 cases and 32 056 controls) revealing brain expressed protocadherin 17 (PCDH17) as a susceptibility gene for major mood disorders. Single-nucleotide polymorphisms (SNPs) spanning the PCDH17 region are significantly associated with major mood disorders; subjects carrying the risk allele showed impaired cognitive abilities, increased vulnerable personality features, decreased amygdala volume and altered amygdala function as compared with non-carriers. The risk allele predicted higher transcriptional levels of PCDH17 mRNA in postmortem brain samples, which is consistent with increased gene expression in patients with bipolar disorder compared with healthy subjects. Further, overexpression of PCDH17 in primary cortical neurons revealed significantly decreased spine density and abnormal dendritic morphology compared with control groups, which again is consistent with the clinical observations of reduced numbers of dendritic spines in the brains of patients with major mood disorders. Given that synaptic spines are dynamic structures which regulate neuronal plasticity and have crucial roles in myriad brain functions, this study reveals a potential underlying biological mechanism of a novel risk gene for major mood disorders involved in synaptic function and related intermediate phenotypes.
  •  
9.
  • Heid, Iris M, et al. (författare)
  • Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution.
  • 2010
  • Ingår i: Nature genetics. - : Nature Publishing Group. - 1546-1718 .- 1061-4036. ; 42:11, s. 949-60
  • Tidskriftsartikel (refereegranskat)abstract
    • Waist-hip ratio (WHR) is a measure of body fat distribution and a predictor of metabolic consequences independent of overall adiposity. WHR is heritable, but few genetic variants influencing this trait have been identified. We conducted a meta-analysis of 32 genome-wide association studies for WHR adjusted for body mass index (comprising up to 77,167 participants), following up 16 loci in an additional 29 studies (comprising up to 113,636 subjects). We identified 13 new loci in or near RSPO3, VEGFA, TBX15-WARS2, NFE2L3, GRB14, DNM3-PIGC, ITPR2-SSPN, LY86, HOXC13, ADAMTS9, ZNRF3-KREMEN1, NISCH-STAB1 and CPEB4 (P = 1.9 × 10(-9) to P = 1.8 × 10(-40)) and the known signal at LYPLAL1. Seven of these loci exhibited marked sexual dimorphism, all with a stronger effect on WHR in women than men (P for sex difference = 1.9 × 10(-3) to P = 1.2 × 10(-13)). These findings provide evidence for multiple loci that modulate body fat distribution independent of overall adiposity and reveal strong gene-by-sex interactions.
  •  
10.
  • Karasik, D., et al. (författare)
  • Disentangling the genetics of lean mass
  • 2019
  • Ingår i: American Journal of Clinical Nutrition. - : Oxford University Press. - 0002-9165 .- 1938-3207. ; 109:2, s. 276-287
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Lean body mass (LM) plays an important role in mobility and metabolic function. We previously identified five loci associated with LM adjusted for fat mass in kilograms. Such an adjustment may reduce the power to identify genetic signals having an association with both lean mass and fat mass. Objectives: To determine the impact of different fat mass adjustments on genetic architecture of LM and identify additional LM loci. Methods: We performed genome-wide association analyses for whole-body LM (20 cohorts of European ancestry with n = 38,292) measured using dual-energy X-ray absorptiometry) or bioelectrical impedance analysis, adjusted for sex, age, age(2), and height with or without fat mass adjustments (Model 1 no fat adjustment; Model 2 adjustment for fat mass as a percentage of body mass; Model 3 adjustment for fat mass in kilograms). Results: Seven single-nucleotide polymorphisms (SNPs) in separate loci, including one novel LM locus (TNRC6B), were successfully replicated in an additional 47,227 individuals from 29 cohorts. Based on the strengths of the associations in Model 1 vs Model 3, we divided the LM loci into those with an effect on both lean mass and fat mass in the same direction and refer to those as "sumo wrestler" loci (FTO and MC4R). In contrast, loci with an impact specifically on LMwere termed "body builder" loci (VCAN and ADAMTSL3). Using existing available genome-wide association study databases, LM increasing alleles of SNPs in sumo wrestler loci were associated with an adverse metabolic profile, whereas LM increasing alleles of SNPs in "body builder" loci were associated with metabolic protection. Conclusions: In conclusion, we identified one novel LM locus (TNRC6B). Our results suggest that a genetically determined increase in lean mass might exert either harmful or protective effects on metabolic traits, depending on its relation to fat mass.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 66
  • [1]234567Nästa
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy