SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kyprianidis Konstantinos) ;pers:(Hosain Md Lokman 1984)"

Sökning: WFRF:(Kyprianidis Konstantinos) > Hosain Md Lokman 1984

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hosain, Md Lokman, 1984- (författare)
  • Fluid Flow and Heat Transfer Simulations for Complex Industrial Applications : From Reynolds Averaged Navier-Stokes towards Smoothed Particle Hydrodynamics
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Optimal process control can significantly enhance energy efficiency of heating and cooling processes in many industries. Process control systems typically rely on measurements and so called grey or black box models that are based mainly on empirical correlations, in which the transient characteristics and their influence on the control parameters are often ignored. A robust and reliable numerical technique, to solve fluid flow and heat transfer problems, such as computational fluid dynamics (CFD), which is capable of providing a detailed understanding of the multiple underlying physical phenomena, is a necessity for optimization, decision support and diagnostics of complex industrial systems. The thesis focuses on performing high-fidelity CFD simulations of a wide range of industrial applications to highlight and understand the complex nonlinear coupling between the fluid flow and heat transfer. The industrial applications studied in this thesis include cooling and heating processes in a hot rolling steel plant, electric motors, heat exchangers and sloshing inside a ship carrying liquefied natural gas. The goal is to identify the difficulties and challenges to be met when simulating these applications using different CFD tools and methods and to discuss the strengths and limitations of the different tools.The mesh-based finite volume CFD solver ANSYS Fluent is employed to acquire detailed and accurate solutions of each application and to highlight challenges and limitations. The limitations of conventional mesh-based CFD tools are exposed when attempting to resolve the multiple space and time scales involved in large industrial processes. Therefore, a mesh-free particle method, smoothed particle hydrodynamics (SPH) is identified in this thesis as an alternative to overcome some of the observed limitations of the mesh-based solvers. SPH is introduced to simulate some of the selected cases to understand the challenges and highlight the limitations. The thesis also contributes to the development of SPH by implementing the energy equation into an open-source SPH flow solver to solve thermal problems. The thesis highlights the current state of different CFD approaches towards complex industrial applications and discusses the future development possibilities.The overall observations, based on the industrial problems addressed in this thesis, can serve as decision tool for industries to select an appropriate numerical method or tool for solving problems within the presented context. The analysis and discussions also serve as a basis for further development and research to shed light on the use of CFD simulations for improved process control, optimization and diagnostics.
  •  
2.
  • Hosain, Md Lokman, 1984-, et al. (författare)
  • Simulation and validation of flow and heat transfer in an infinite mini-channel using Smoothed Particle Hydrodynamics
  • 2019
  • Ingår i: Energy Procedia. - : Elsevier. - 1876-6102. ; , s. 5907-5912
  • Konferensbidrag (refereegranskat)abstract
    • Fluid flow and heat transfer in small channels have a wide range of engineering and medical applications. It has always been a topic of numerous theoretical, numerical and experimental studies. Several numerical methods have been used to simulate such flows. The most common approaches are the finite volume method (FVM) and the direct numerical simulation (DNS), which are numerically expensive to solve cases involving complex engineering problems. The main purpose of this work is to investigate the usability of the mesh-free particle based Smoothed Particle Hydrodynamics (SPH) method to simulate convective heat transfer. To validate our approach, as a starting point, we choose to solve a simple well-established problem which is the laminar flow and heat transfer through an infinitely long mini-channel. The solution obtained from SPH method has been compared to the solution from FVM method and analytical solution with good accuracy. The results presented in this paper show that SPH is capable to solve laminar forced convection heat transfer, however, turbulent flow cases need to be considered to be able to utilize the SPH method for engineering thermal applications.
  •  
3.
  • Hosain, Md Lokman, 1984-, et al. (författare)
  • Smoothed particle hydrodynamics modeling of industrial processes involving heat transfer
  • 2019
  • Ingår i: Applied Energy. - : Elsevier Ltd. - 0306-2619 .- 1872-9118. ; 252
  • Tidskriftsartikel (refereegranskat)abstract
    • Smoothed Particle Hydrodynamics (SPH) is a mesh-free particle method that has been widely used over the past decade to model complex flows. The method has mainly been used to investigate problems related to hydrodynamics and maritime engineering, in which heat transfer does not play a key role. In this article, the heat-conduction equation is implemented in the open-source code DualSPHysics, based on the SPH technique, and applied to different study cases, including conduction in still water in a cavity, laminar water flow between two infinite parallel plates and tube bank heat exchanger. The thermal solutions obtained from SPH are benchmarked with the solutions from Finite Volume Method (FVM) and validated using available analytical solutions. DualSPHysics results are in good agreement with FVM and analytical models, and demonstrate the potential of the meshless approach for industrial applications involving heat transfer.
  •  
4.
  • Hosain, Md Lokman, 1984-, et al. (författare)
  • Smoothed Particle Hydrodynamics modeling of transient conduction and convection heat transfer
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Smoothed Particle Hydrodynamics (SPH) is a mesh-free particle method that has been widely used in the last years to model some complex flows. SPH was mainly used to investigate problems related to hydrodynamics and maritime engineering where heat transfer is of no importance. Thermal problems have seldom been addressed due to the limitation of the main commercial and open-source SPH codes.In this article, the energy equation is implemented in the SPH based open-source code DualSPHysics to solve conduction and forced convection heat transfer problems. Laminar flow cases are simulated as the first validation cases of the implemented model. The studied cases include conduction in an aluminum block, conduction in still water in a cavity, laminar water flow between two infinite parallel plates and tube bank heat exchanger. The thermal solutions obtained from SPH are benchmarked with the solutions from Finite Volume Method (FVM) and also validated using available analytical solutions. The obtained results are in good agreement with FVM and available analytical models, which combined with the advantages of the meshless approach, show the high potential for industrial heat transfer applications.This development is an important step towards thermal optimization of several industrial applications that can’t benefit from the conventional FVM approach due to geometry or process complexities. The demonstrated SPH simulation and visualization capabilities contribute to build the future reliable energy-saving solutions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy