SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kyprianidis Konstantinos) ;pers:(Sahoo Smruti)"

Search: WFRF:(Kyprianidis Konstantinos) > Sahoo Smruti

  • Result 1-10 of 10
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Hecken, Tobias, et al. (author)
  • Conceptual Design Studies of “Boosted Turbofan” Configuration for short range
  • 2020
  • In: AIAA 2020-0506 Session: Hybrid Electric Aircraft Design Under Clean Sky 2 (LPA WP1.6.1.4). - Reston, Virginia : American Institute of Aeronautics and Astronautics.
  • Conference paper (peer-reviewed)abstract
    • This paper describes the current activities at the German Aerospace Center (DLR) and an associated consortium related to conceptual design studies of an aircraft configuration with hybrid electric propulsion for a typical short range commercial transport mission. The work is implemented in the scope of the European Clean Sky 2 program in the project “Advanced Engine and Aircraft Configurations” (ADEC) and “Turbo electric Aircraft Design Environment” (TRADE). The configuration analyzed incorporates parallel hybrid architecture consisting of gas turbines, electric machines, and batteries that adds electric power to the fans of the engines. A conceptual aircraft sizing workflow built in the DLR’s “Remote Component Environment” (RCE) incorporating tools of DLR that are based on semi-empirical and low level physics based methods. The TRADE consortium developed a simulation and optimization design platform with analysis models of higher fidelity for an aircraft with hybrid electric propulsion architecture. An implementation of the TRADE simulation and optimization design platform into the DLR’s RCE workflow by replacing the DLR models was carried out. The focus of this paper is on the quantitative evaluation of the “Boosted Turbofan” configuration utilizing the resulting workflow. In order to understand the cooperation between the DLR and TRADE consortium, a brief overview of the activities is given. Then the multi-disciplinary overall aircraft sizing workflow for hybrid electric aircraft built in RCE is shown. Hereafter, the simulation and optimization models of the TRADE design platform are described. Subsequently, an overview of the aircraft configuration considered in the scope of this work is given. The design space studies of the “Boosted Turbofan” configuration are presented. Finally, the deviations of the results between the workflows with and without the TRADE modules are discussed.
  •  
2.
  • Sahoo, Smruti, et al. (author)
  • A Review of Concepts, Benefits, and Challenges for Future Electrical Propulsion-Based Aircraft
  • 2020
  • In: Aerospace. - : MDPI AG. - 2226-4310. ; 7:4
  • Research review (peer-reviewed)abstract
    • Electrification of the propulsion system has opened the door to a new paradigm of propulsion system configurations and novel aircraft designs, which was never envisioned before. Despite lofty promises, the concept must overcome the design and sizing challenges to make it realizable. A suitable modeling framework is desired in order to explore the design space at the conceptual level. A greater investment in enabling technologies, and infrastructural developments, is expected to facilitate its successful application in the market. In this review paper, several scholarly articles were surveyed to get an insight into the current landscape of research endeavors and the formulated derivations related to electric aircraft developments. The barriers and the needed future technological development paths are discussed. The paper also includes detailed assessments of the implications and other needs pertaining to future technology, regulation, certification, and infrastructure developments, in order to make the next generation electric aircraft operation commercially worthy.
  •  
3.
  • Sahoo, Smruti, et al. (author)
  • Performance assessment of an integrated parallel hybrid-electric propulsion system aircraft
  • 2019
  • In: Proceedings of the ASME Turbo Expo. - : American Society of Mechanical Engineers (ASME). - 9780791858608
  • Conference paper (peer-reviewed)abstract
    • Hybrid-electric propulsion system promises avenues for a greener aviation sector. Ground research work was performed in the past for the feasibility assessment, at the system level, for such novel concepts and the results showed were promising. Such designs, however, possess unique challenges from an operational point of view, and for sizing of the sub-system components; necessitating further design space exploration for associating with an optimal operational strategy. In light of the above, the paper aims at presenting an operational analysis and performance assessment study, for a conceptualised parallel hybrid design of an advanced geared turbofan engine, based on 2035 timeframe technology level. It is identified that the hybrid power operation of the engine is constrained with respect to the requirement of maintaining an adequate surge margin for the low pressure side components; however, a core re-optimised engine design with consideration of electrical power add-in for the design condition, relieves such limit. Therefore such a design, makes it suitable for implementation of higher degree of hybridisation. Furthermore, performance assessment is made both at engine and engine-aircraft integrated level for both scenarios of hybrid operation and the benefits are established relative to the baseline engine. The performance at engine level engine specific fuel consumption (SFC), thrust specific power consumption (TSPC), and overall efficiency, shows improvement in both hybridised scenarios. Improvement in SFC is achieved due to supply of the electrical power, whereas, the boost in TSPC, and overall efficiency is attributed to the use of higher efficiency electrical drive system. Furthermore, it is observed that while the hybridised scenario performs better at engine level, the core re-optimised design exhibits a better saving for block fuel/energy consumption, due to the considerable weight savings in the core components.
  •  
4.
  • Sahoo, Smruti, et al. (author)
  • System-level assessment of a partially distributed hybrid electric propulsion system
  • 2022
  • In: Proceedings of the ASME Turbo Expo. - : American Society of Mechanical Engineers (ASME). - 9780791885970
  • Conference paper (peer-reviewed)abstract
    • Hybrid electric propulsion system based aircraft designs are paving the path towards a future greener aviation sector and thus, have been the major focus of the aeronautical community. The fuel efficiency improvements of such propulsion system configurations are realized at the aircraft level. In order to assess such benefits, a radical shift in the sub-system modeling requirements and an integrated conceptual aircraft design environment is necessary. This work highlights performance model development work pertaining to different hybrid electric propulsion system components and development of a design platform which facilitates tighter integration of different novel propulsion system disciplines at aircraft level. Furthermore, a serial/parallel partially distributed hybrid electric propulsion system is chosen as the candidate configuration to assess the potential benefits and associated trade-offs by conducting multidisciplinary design space exploration studies. It is established that the distributed hybrid electric configurations pose the potential for aircraft structural weight reduction benefits. The study further illustrates the impacts from onboard charging during the low thrust requirement segments, quantitatively. It is highlighted that the amount of off-take power extraction for onboard charging of the battery is limited due to engine operability and higher specific fuel consumption issues. Though provisioning of onboard charging lowers the potential for block fuel savings, improvement in battery specific energy can make it more promising, which is also dependent on the hybridization power level. It is established that distributed propulsion system configurations particularly benefit from a high aspect ratio wing structure, which manifests for high hybridization power levels. A high voltage level transmission system with more efficient electrical components, enhances opportunities for achieving block fuel saving benefits.
  •  
5.
  • Sahoo, Smruti, et al. (author)
  • System-Level Assessment of a Partially Distributed Hybrid Electric Propulsion System
  • 2023
  • In: Journal of engineering for gas turbines and power. - : American Society of Mechanical Engineers (ASME). - 0742-4795 .- 1528-8919. ; 145:2
  • Journal article (peer-reviewed)abstract
    • Hybrid electric propulsion system-based aircraft designs are paving the path toward a future greener aviation sector and thus, have been the major focus of the aeronautical community. The fuel efficiency improvement associated to such propulsion system configurations are realized at the aircraft level. In order to assess such benefits, a radical shift in the subsystem modeling requirements and of a conceptual-level aircraft design environment are necessary. This work highlights performance model development work pertaining to different hybrid electric propulsion system components and the development of a design platform that facilitates tighter integration of different novel propulsion system disciplines at the aircraft level. Furthermore, a serial/parallel partially distributed hybrid electric propulsion system is chosen as the candidate configuration to assess the potential benefits and associated tradeoffs by conducting multidisciplinary design space exploration studies. It is established that the distributed hybrid electric configurations pose the potential for aircraft structural weight reduction benefits. The study further illustrates the impacts of onboard charging during the low thrust requirement segments, quantitatively. The provision of onboard charging lowers the potential for block fuel savings, and improvement in battery specific energy can make it more promising, which is also dependent on the hybridization power level. It is established that distributed propulsion system configurations particularly benefit from a high aspect ratio wing structure, which manifests in high hybridization power levels. A high voltage level transmission system with more efficient electrical components enhances opportunities for achieving block fuel saving benefits.
  •  
6.
  • Schnell, Rainer, et al. (author)
  • Assessment of a Turbo‐Electric Aircraft Configuration with Aft‐Propulsion Using Boundary Layer Ingestion
  • 2019
  • In: Aerospace. - Zurich, Switzerland : MDPI AG. - 2226-4310. ; 6:12
  • Journal article (peer-reviewed)abstract
    • In this paper, a turbo‐electric propulsion system was analyzed, and its performance was assessed. The aircraft considered here was a single‐aisle, medium‐range configuration targeting a capacity of 150 Pax. The propulsion concept comprised two boosted geared turbofan engines mounted under‐wing. Those main engines were supported by an electrically driven aft‐propulsor contributing to the thrust generation and by taking advantage of ingesting the boundary layer of the fuselage for potentially higher levels of propulsive efficiency and allowing for the improved operation of the main engines. The performance assessment as carried out in the context of this paper involved different levels: Firstly, based on the reference aircraft and the detailed description of its major components, the engine performance model for both main engines, as well as for the electrically driven aft‐propulsor was set up. The methodology, as introduced, has already been applied in the context of hybrid‐electric propulsion and allowed for the aforementioned aircraft sizing, as well as the subsequent gas turbine multi‐point synthesis (simulation). A geared turbofan architecture with 2035 technology assumptions was considered for the main engine configuration. The present trade study focused on the design and performance analysis of the aft‐propulsor and how it affected the performance of the main engines, due to the electric power generation. In order to allow for a more accurate description of the performance of this particular module, the enhanced streamline curvature method with an underlying and pre‐optimized profile database was used to design a propulsor tailored to meet the requirements of the aft propulsor as derived from the cycle synthesis and overall aircraft specification; existing design expertise for novel and highly integrated propulsors could be taken advantage of herein. The resulting performance characteristics from the streamline curvature method were then fed back to the engine performance model in a closely coupled approach in order to have a more accurate description of the module behavior. This direct coupling allowed for enhanced sensitivity studies, monitoring different top‐level parameters, such as the thrust/power split between the main engines and the aft propulsor. As a result, different propulsor specifications and fan designs with optimal performance characteristics were achieved, which in return affected the performance of all subsystems considered. 
  •  
7.
  • Sielemann, M., et al. (author)
  • Modelica and functional mock-up interface : Open standards for gas turbine simulation
  • 2019
  • In: Proceedings of the ASME Turbo Expo. - : American Society of Mechanical Engineers (ASME). - 9780791858608
  • Conference paper (peer-reviewed)abstract
    • This paper introduces two physical modeling standards in the gas turbine and cycle analysis context. Modelica is the defacto standard for physical system modeling and simulation. The Functional Mock-Up Interface is a domain-independent standard for model exchange (“engine decks”). The paper summarizes key language concepts and discusses important design patterns in the application of gas turbine simulation concepts to the acausal modeling language. To substantiate how open standards are applicable to gas turbine simulation, the paper closes with two application examples, a conventional unmixed turbofan thermodynamic cycle and weight analysis as well as an electrically boosted geared turbofan.
  •  
8.
  • Vouros, Stavros, et al. (author)
  • Enabling the potential of hybrid electric propulsion through lean-burn-combustion turbofans
  • 2021
  • In: Journal of the Global Power and Propulsion Society. - : Global Power and Propulsion Society. - 2515-3080. ; 5, s. 164-176
  • Journal article (peer-reviewed)abstract
    • Hybrid-electric propulsion has emerged as a promising technology to mitigate the adverse environmental impact of civil aviation. Boosting conventional gas turbines with electric power improves mission performance and operability. In this work the impact of electrification on pollutant emissions and direct operating cost of geared turbofan configurations is evaluated for an 150-passenger aircraft. A baseline two-and-a-half-shaft geared turbofan, representative of year 2035 entry-into-service technology, is employed. Parallel hybridization is implemented through coupling a battery-powered electric motor to the engine low-speed shaft. A multidisciplinary design space exploration framework is employed comprising modelling methods for multi-point engine design, aircraft sizing, performance and pollutant emissions, mission and economic analysis. A probabilistic approach is developed considering uncertainties in the evaluation of direct operating cost. Sensitivities to electrical power system technology levels, as well as fuel price and emissions taxation are quantified at different time-frames. The benefits of lean direct injection are explored along short-, medium-, and long-range missions, demonstrating 32% NOx savings compared to traditional rich-burn, quick-mix, lean-burn technologies in short-range operations. The impact of electrification on the enhancement of lean direct injection benefits is investigated. For hybrid-electric powerplants, the take-off-to-cruise turbine entry temperature ratio is 2.5% lower than the baseline, extending the corresponding NOx reductions to the level of 46% in short-range missions. This work sheds light on the environmental and economic potential and limitations of a hybrid-electric propulsion concept towards a greener and sustainable civil aviation. 
  •  
9.
  • Xin, Zhao, et al. (author)
  • A framework for optimization of hybrid aircraft
  • 2019
  • In: Proceedings of the ASME Turbo Expo. - : American Society of Mechanical Engineers (ASME). - 9780791858608 ; 3
  • Conference paper (peer-reviewed)abstract
    • To achieve the goals of substantial improvements in efficiency and emissions set by Flightpath 2050, fundamentally different concepts are required. As one of the most promising solutions, electrification of the aircraft primary propulsion is currently a prime focus of research and development. Unconventional propulsion sub-systems, mainly the electrical power system, associated thermal management system and transmission system, provide a variety of options for integration in the existing propulsion systems. Different combinations of the gas turbine and the unconventional propulsion sub-systems introduce different configurations and operation control strategies. The trade-off between the use of the two energy sources, jet fuel and electrical energy, is primarily a result of the trade-offs between efficiencies and sizing characteristics of these sub-systems. The aircraft structure and performance are the final carrier of these trade-offs. Hence, full design space exploration of various hybrid derivatives requires global investigation of the entire aircraft considering these key propulsion sub-systems and the aircraft structure and performance, as well as their interactions. This paper presents a recent contribution of the development for a physics-based simulation and optimization platform for hybrid electric aircraft conceptual design. Modeling of each subsystem and the aircraft structure are described as well as the aircraft performance modeling and integration technique. With a focus on the key propulsion sub-systems, aircraft structure and performance that interfaces with existing conceptual design frameworks, this platform aims at full design space exploration of various hybrid concepts at a low TRL level.
  •  
10.
  • Zhao, Xin, 1986, et al. (author)
  • Off-design performance analysis of hybridised aircraft gas turbine
  • 2019
  • In: Aeronautical Journal. - : Cambridge University Press (CUP). - 0001-9240 .- 2059-6464. ; 123:1270, s. 1999-2018
  • Journal article (peer-reviewed)abstract
    • An advanced geared turbofan with year 2035 technology level assumptions was established and used for the hybridisation study in this paper. By boosting the low-speed shaft of the turbofan with electrical power through the accessory gearbox, a parallel hybrid concept was set up. Focusing on the off-design performance of the hybridised gas turbine, electrical power input to the shaft, defined as positive hybridisation in this context, generally moves the compressor operation towards surge. On the other hand, the negative hybridisation, which is to reverse the power flow direction can improve the part-load operations of the turbofan and minimise the use of compressor handling bleeds. For the pre-defined mission given in the paper, negative hybridisation of descent, approach and landing, and taxi operations with 580 kW, 240 kW and 650 kW, respectively was found sufficient to keep a minimum compressor surge margin requirement without handling bleed. Looking at the hybridisation of key operating points, boosting the cruise operation of the baseline geared turbofan is, however, detrimental to the engine efficiency as it is pushing the cruise operation further away from the energy optimal design point. Without major modifications to the engine design, the benefit of the hybridisation appears primarily at the thermomechanical design point, the hot-day take-off. With the constraint of the turbine blade metal temperature in mind, a 500kW positive hybridisation at hot-day take-off gave cruise specific fuel consumption (SFC) reduction up to 0.5%, mainly because of reduced cooling flow requirement. Through the introduction of typical electrical power system performance characteristics and engine performance exchange rates, a first principles assessment is illustrated. By applying the strategies discussed in the paper, a 3% reduction in block fuel burn can be expected, if a higher power density electrical power system can be achieved.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view