SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kyprianidis Konstantinos) ;pers:(Xin Zhao)"

Sökning: WFRF:(Kyprianidis Konstantinos) > Xin Zhao

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hecken, Tobias, et al. (författare)
  • Conceptual Design Studies of “Boosted Turbofan” Configuration for short range
  • 2020
  • Ingår i: AIAA 2020-0506 Session: Hybrid Electric Aircraft Design Under Clean Sky 2 (LPA WP1.6.1.4). - Reston, Virginia : American Institute of Aeronautics and Astronautics.
  • Konferensbidrag (refereegranskat)abstract
    • This paper describes the current activities at the German Aerospace Center (DLR) and an associated consortium related to conceptual design studies of an aircraft configuration with hybrid electric propulsion for a typical short range commercial transport mission. The work is implemented in the scope of the European Clean Sky 2 program in the project “Advanced Engine and Aircraft Configurations” (ADEC) and “Turbo electric Aircraft Design Environment” (TRADE). The configuration analyzed incorporates parallel hybrid architecture consisting of gas turbines, electric machines, and batteries that adds electric power to the fans of the engines. A conceptual aircraft sizing workflow built in the DLR’s “Remote Component Environment” (RCE) incorporating tools of DLR that are based on semi-empirical and low level physics based methods. The TRADE consortium developed a simulation and optimization design platform with analysis models of higher fidelity for an aircraft with hybrid electric propulsion architecture. An implementation of the TRADE simulation and optimization design platform into the DLR’s RCE workflow by replacing the DLR models was carried out. The focus of this paper is on the quantitative evaluation of the “Boosted Turbofan” configuration utilizing the resulting workflow. In order to understand the cooperation between the DLR and TRADE consortium, a brief overview of the activities is given. Then the multi-disciplinary overall aircraft sizing workflow for hybrid electric aircraft built in RCE is shown. Hereafter, the simulation and optimization models of the TRADE design platform are described. Subsequently, an overview of the aircraft configuration considered in the scope of this work is given. The design space studies of the “Boosted Turbofan” configuration are presented. Finally, the deviations of the results between the workflows with and without the TRADE modules are discussed.
  •  
2.
  • Kavvalos, Mavroudis, et al. (författare)
  • A Modelling Approach of Variable Geometry for Low Pressure Ratio Fans
  • 2019
  • Ingår i: International Symposium on Air Breathing Engines, ISABE 2019, Canberra, Australia, 23 - 27 September 2019 Paper No. ISABE-2019-24382.
  • Konferensbidrag (refereegranskat)abstract
    • This paper presents the development and application of a modelling approach of variable geometry conceptsfor low pressure ratio fans; namely Variable Area Nozzle and Variable Pitch Fan. An enhanced approachfor Outlet Guide Vane pressure loss predictions and an aerothermodynamic analysis of variable pitchconcept are developed and integrated into a multi-disciplinary conceptual engine design framework. Astreamline curvature algorithm is deployed for the derivation of the off-design fan performance map,alleviating scaling issues from higher pressure ratio fan designs. Correction deltas are derived through thevariable pitch analysis for calculating the re-shaped off-design fan performance map. The aforementionedvariable geometry concepts are evaluated in terms of surge margin at engine and aircraft level for a lowpressure ratio aft-fan of a hybrid-electric configuration. Performance assessments carried out suggest thata +8° closing of fan blade cascades leads to a 33% surge margin improvement (with reference being thesurge margin without variable geometry) compared to a 25% improvement achieved by +20% opening thenozzle area at end of runway take-off conditions. Although weight and complexity implications of variablegeometry are not considered, the integrated modelling approach is shown to be able to assess and comparesuch novel engine technologies for low pressure ratio fans in terms of operability.
  •  
3.
  • Rahman, Moksadur, 1989-, et al. (författare)
  • Diagnostics-Oriented Modelling of Micro Gas Turbines for Fleet Monitoring and Maintenance Optimization
  • 2018
  • Ingår i: Processes. - : MDPI AG. - 2227-9717. ; 6:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The market for the small-scale micro gas turbine is expected to grow rapidly in the coming years. Especially, utilization of commercial off-the-shelf components is rapidly reducing the cost of ownership and maintenance, which is paving the way for vast adoption of such units. However, to meet the high-reliability requirements of power generators, there is an acute need of a real-time monitoring system that will be able to detect faults and performance degradation, and thus allow preventive maintenance of these units to decrease downtime. In this paper, a micro gas turbine based combined heat and power system is modelled and used for development of physics-based diagnostic approaches. Different diagnostic schemes for performance monitoring of micro gas turbines are investigated.
  •  
4.
  • Sahoo, Smruti, et al. (författare)
  • A Review of Concepts, Benefits, and Challenges for Future Electrical Propulsion-Based Aircraft
  • 2020
  • Ingår i: Aerospace. - : MDPI AG. - 2226-4310. ; 7:4
  • Forskningsöversikt (refereegranskat)abstract
    • Electrification of the propulsion system has opened the door to a new paradigm of propulsion system configurations and novel aircraft designs, which was never envisioned before. Despite lofty promises, the concept must overcome the design and sizing challenges to make it realizable. A suitable modeling framework is desired in order to explore the design space at the conceptual level. A greater investment in enabling technologies, and infrastructural developments, is expected to facilitate its successful application in the market. In this review paper, several scholarly articles were surveyed to get an insight into the current landscape of research endeavors and the formulated derivations related to electric aircraft developments. The barriers and the needed future technological development paths are discussed. The paper also includes detailed assessments of the implications and other needs pertaining to future technology, regulation, certification, and infrastructure developments, in order to make the next generation electric aircraft operation commercially worthy.
  •  
5.
  • Sahoo, Smruti, et al. (författare)
  • Performance assessment of an integrated parallel hybrid-electric propulsion system aircraft
  • 2019
  • Ingår i: Proceedings of the ASME Turbo Expo. - : American Society of Mechanical Engineers (ASME). - 9780791858608
  • Konferensbidrag (refereegranskat)abstract
    • Hybrid-electric propulsion system promises avenues for a greener aviation sector. Ground research work was performed in the past for the feasibility assessment, at the system level, for such novel concepts and the results showed were promising. Such designs, however, possess unique challenges from an operational point of view, and for sizing of the sub-system components; necessitating further design space exploration for associating with an optimal operational strategy. In light of the above, the paper aims at presenting an operational analysis and performance assessment study, for a conceptualised parallel hybrid design of an advanced geared turbofan engine, based on 2035 timeframe technology level. It is identified that the hybrid power operation of the engine is constrained with respect to the requirement of maintaining an adequate surge margin for the low pressure side components; however, a core re-optimised engine design with consideration of electrical power add-in for the design condition, relieves such limit. Therefore such a design, makes it suitable for implementation of higher degree of hybridisation. Furthermore, performance assessment is made both at engine and engine-aircraft integrated level for both scenarios of hybrid operation and the benefits are established relative to the baseline engine. The performance at engine level engine specific fuel consumption (SFC), thrust specific power consumption (TSPC), and overall efficiency, shows improvement in both hybridised scenarios. Improvement in SFC is achieved due to supply of the electrical power, whereas, the boost in TSPC, and overall efficiency is attributed to the use of higher efficiency electrical drive system. Furthermore, it is observed that while the hybridised scenario performs better at engine level, the core re-optimised design exhibits a better saving for block fuel/energy consumption, due to the considerable weight savings in the core components.
  •  
6.
  • Schnell, Rainer, et al. (författare)
  • Assessment of a Turbo‐Electric Aircraft Configuration with Aft‐Propulsion Using Boundary Layer Ingestion
  • 2019
  • Ingår i: Aerospace. - Zurich, Switzerland : MDPI AG. - 2226-4310. ; 6:12
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, a turbo‐electric propulsion system was analyzed, and its performance was assessed. The aircraft considered here was a single‐aisle, medium‐range configuration targeting a capacity of 150 Pax. The propulsion concept comprised two boosted geared turbofan engines mounted under‐wing. Those main engines were supported by an electrically driven aft‐propulsor contributing to the thrust generation and by taking advantage of ingesting the boundary layer of the fuselage for potentially higher levels of propulsive efficiency and allowing for the improved operation of the main engines. The performance assessment as carried out in the context of this paper involved different levels: Firstly, based on the reference aircraft and the detailed description of its major components, the engine performance model for both main engines, as well as for the electrically driven aft‐propulsor was set up. The methodology, as introduced, has already been applied in the context of hybrid‐electric propulsion and allowed for the aforementioned aircraft sizing, as well as the subsequent gas turbine multi‐point synthesis (simulation). A geared turbofan architecture with 2035 technology assumptions was considered for the main engine configuration. The present trade study focused on the design and performance analysis of the aft‐propulsor and how it affected the performance of the main engines, due to the electric power generation. In order to allow for a more accurate description of the performance of this particular module, the enhanced streamline curvature method with an underlying and pre‐optimized profile database was used to design a propulsor tailored to meet the requirements of the aft propulsor as derived from the cycle synthesis and overall aircraft specification; existing design expertise for novel and highly integrated propulsors could be taken advantage of herein. The resulting performance characteristics from the streamline curvature method were then fed back to the engine performance model in a closely coupled approach in order to have a more accurate description of the module behavior. This direct coupling allowed for enhanced sensitivity studies, monitoring different top‐level parameters, such as the thrust/power split between the main engines and the aft propulsor. As a result, different propulsor specifications and fan designs with optimal performance characteristics were achieved, which in return affected the performance of all subsystems considered. 
  •  
7.
  • Sielemann, M., et al. (författare)
  • Introduction to multi-point design strategies for aero engines
  • 2020
  • Ingår i: Proceedings of the ASME Turbo Expo. - : American Society of Mechanical Engineers (ASME). - 9780791884157 ; 6
  • Konferensbidrag (refereegranskat)abstract
    • Classic gas turbine design relies on the definition of a design point, and the subsequent assessment of the design on a range of off-design conditions. On the design point, both component sizing (e.g., in terms of physical dimensions or in terms of map scaling parameters) and a solution to the off-design governing equations are established. With this approach, it is however difficult to capture the contradicting requirements on the full operating envelope. Thus, practical design efforts rely on various multi-point design approaches. This paper introduces a simplified notation of such multi-point approaches via synthesis matching tables. It then summarizes two academic state-of-the-art multi-point design schemes using such tables in a comprehensible fashion. The target audience are students and engineers familiar with the basics of classic cycle design and analysis looking for a practical introduction to such multi-point design approaches. Application examples are given in terms of a simple turbojet and a typical geared turbofan as modeled in state-of-the-art academic cycle design and analysis efforts. The results of the classic design point approach are compared to those of multi-point approaches. Copyright © 2020 ASME
  •  
8.
  • Sielemann, M., et al. (författare)
  • Modelica and functional mock-up interface : Open standards for gas turbine simulation
  • 2019
  • Ingår i: Proceedings of the ASME Turbo Expo. - : American Society of Mechanical Engineers (ASME). - 9780791858608
  • Konferensbidrag (refereegranskat)abstract
    • This paper introduces two physical modeling standards in the gas turbine and cycle analysis context. Modelica is the defacto standard for physical system modeling and simulation. The Functional Mock-Up Interface is a domain-independent standard for model exchange (“engine decks”). The paper summarizes key language concepts and discusses important design patterns in the application of gas turbine simulation concepts to the acausal modeling language. To substantiate how open standards are applicable to gas turbine simulation, the paper closes with two application examples, a conventional unmixed turbofan thermodynamic cycle and weight analysis as well as an electrically boosted geared turbofan.
  •  
9.
  • Sielemann, M., et al. (författare)
  • Multi-point design of parallel hybrid aero engines
  • 2020
  • Ingår i: AIAA Propulsion and Energy 2020 Forum. - Västerås : Institute of Electrical and Electronics Engineers Inc.. - 9781624106026 ; , s. 1-18
  • Konferensbidrag (refereegranskat)abstract
    • A parallel hybrid configuration is a feasible means to reduce fuel consumption of gas turbines propelling aircraft. It introduces an electric drive on one of the spools of the gas turbine, typically the low pressure spool. The electric drive is supplied by a battery, which can also be charged when excess power is available (for instance during conditions requiring handling bleed in conventional designs). It also requires a thermal management system to dissipate heat away from electric components. While the scientific literature describes parallel hybrid studies and anticipated benefits assuming various future entry into service dates, there is limited information on the design of the gas turbine component of such a system. For conventional gas turbines, multi-point design schemes are used. This paper describes, in a consistent fashion and based on a formalized notation, how such multi-point design schemes are applied to parallel hybrid aero engines. It interprets published approaches, fills gaps in methodology descriptions with meaningful assumptions and summarizes design intent. It also discusses cycle designs generated by different methodologies based on the same cycle model. Results show that closure equations prescribing boost power can be preferable over closure equations prescribing temperature ratios for uniqueness and engineering intuitiveness while the latter can be beneficial in a second step for design space exploration. 
  •  
10.
  • Sielemann, M., et al. (författare)
  • ON the SHAFT SPEED SELECTION of PARALLEL HYBRID AERO ENGINES
  • 2021
  • Ingår i: Proceedings of the ASME Turbo Expo. - : American Society of Mechanical Engineers (ASME). - 9780791884898 ; 1
  • Konferensbidrag (refereegranskat)abstract
    • The boosted turbo fan or parallel hybrid is a promising means to reduce fuel consumption of gas turbines on aircraft. With an electric drive on the low-pressure spool of the gas turbine, it requires a trade-off between the characteristics of the gas turbine and the electric power sub-systems. Reducing specific thrust at a given thrust requirement results in a larger fan with a lower pressure ratio. This leads to improved propulsive efficiency but at the expense of increased weight and nacelle drag. At a given design relative tip Mach number, increasing fan size and hence tip diameter means the fan shaft speed will need to be reduced. This will, according to occasionally quoted rules of thumb', make the directly coupled electrical drive more efficient but heavier. The objective of this paper is to expose some key aspects of this trade-off in terms of efficiency and weight, and relate them to these guidelines. The paper applies sophisticated methodology in both addressed domains. For the gas turbine, multi-point design is used. Here, established synthesis matching schemes focusing on gas turbine performance parameters are extended with parameters from the sizing and weight estimation such as diameters and tip speeds. For the electrical machine, fully analytical sizing capturing the impact of cooling supply is used. The paper reports estimated gas path and machine geometries. It gives an understanding of the interactions between both sub-systems and allows concluding which low pressure spool speed gives the best instantaneous performance. It largely confirms the quoted rules of thumb but exposes that the factors affecting machine efficiency are more involved than implied for an integrated design.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy