SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kyprianidis Konstantinos) ;pers:(Zhao Xin 1986)"

Sökning: WFRF:(Kyprianidis Konstantinos) > Zhao Xin 1986

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hecken, Tobias, et al. (författare)
  • Conceptual Design Studies of “Boosted Turbofan” Configuration for short range
  • 2020
  • Ingår i: AIAA 2020-0506 Session: Hybrid Electric Aircraft Design Under Clean Sky 2 (LPA WP1.6.1.4). - Reston, Virginia : American Institute of Aeronautics and Astronautics.
  • Konferensbidrag (refereegranskat)abstract
    • This paper describes the current activities at the German Aerospace Center (DLR) and an associated consortium related to conceptual design studies of an aircraft configuration with hybrid electric propulsion for a typical short range commercial transport mission. The work is implemented in the scope of the European Clean Sky 2 program in the project “Advanced Engine and Aircraft Configurations” (ADEC) and “Turbo electric Aircraft Design Environment” (TRADE). The configuration analyzed incorporates parallel hybrid architecture consisting of gas turbines, electric machines, and batteries that adds electric power to the fans of the engines. A conceptual aircraft sizing workflow built in the DLR’s “Remote Component Environment” (RCE) incorporating tools of DLR that are based on semi-empirical and low level physics based methods. The TRADE consortium developed a simulation and optimization design platform with analysis models of higher fidelity for an aircraft with hybrid electric propulsion architecture. An implementation of the TRADE simulation and optimization design platform into the DLR’s RCE workflow by replacing the DLR models was carried out. The focus of this paper is on the quantitative evaluation of the “Boosted Turbofan” configuration utilizing the resulting workflow. In order to understand the cooperation between the DLR and TRADE consortium, a brief overview of the activities is given. Then the multi-disciplinary overall aircraft sizing workflow for hybrid electric aircraft built in RCE is shown. Hereafter, the simulation and optimization models of the TRADE design platform are described. Subsequently, an overview of the aircraft configuration considered in the scope of this work is given. The design space studies of the “Boosted Turbofan” configuration are presented. Finally, the deviations of the results between the workflows with and without the TRADE modules are discussed.
  •  
2.
  • Sahoo, Smruti, et al. (författare)
  • A Review of Concepts, Benefits, and Challenges for Future Electrical Propulsion-Based Aircraft
  • 2020
  • Ingår i: Aerospace. - : MDPI AG. - 2226-4310. ; 7:4
  • Forskningsöversikt (refereegranskat)abstract
    • Electrification of the propulsion system has opened the door to a new paradigm of propulsion system configurations and novel aircraft designs, which was never envisioned before. Despite lofty promises, the concept must overcome the design and sizing challenges to make it realizable. A suitable modeling framework is desired in order to explore the design space at the conceptual level. A greater investment in enabling technologies, and infrastructural developments, is expected to facilitate its successful application in the market. In this review paper, several scholarly articles were surveyed to get an insight into the current landscape of research endeavors and the formulated derivations related to electric aircraft developments. The barriers and the needed future technological development paths are discussed. The paper also includes detailed assessments of the implications and other needs pertaining to future technology, regulation, certification, and infrastructure developments, in order to make the next generation electric aircraft operation commercially worthy.
  •  
3.
  • Sielemann, M., et al. (författare)
  • Introduction to multi-point design strategies for aero engines
  • 2020
  • Ingår i: Proceedings of the ASME Turbo Expo. - : American Society of Mechanical Engineers (ASME). - 9780791884157 ; 6
  • Konferensbidrag (refereegranskat)abstract
    • Classic gas turbine design relies on the definition of a design point, and the subsequent assessment of the design on a range of off-design conditions. On the design point, both component sizing (e.g., in terms of physical dimensions or in terms of map scaling parameters) and a solution to the off-design governing equations are established. With this approach, it is however difficult to capture the contradicting requirements on the full operating envelope. Thus, practical design efforts rely on various multi-point design approaches. This paper introduces a simplified notation of such multi-point approaches via synthesis matching tables. It then summarizes two academic state-of-the-art multi-point design schemes using such tables in a comprehensible fashion. The target audience are students and engineers familiar with the basics of classic cycle design and analysis looking for a practical introduction to such multi-point design approaches. Application examples are given in terms of a simple turbojet and a typical geared turbofan as modeled in state-of-the-art academic cycle design and analysis efforts. The results of the classic design point approach are compared to those of multi-point approaches. Copyright © 2020 ASME
  •  
4.
  • Sielemann, M., et al. (författare)
  • Multi-point design of parallel hybrid aero engines
  • 2020
  • Ingår i: AIAA Propulsion and Energy 2020 Forum. - Västerås : Institute of Electrical and Electronics Engineers Inc.. - 9781624106026 ; , s. 1-18
  • Konferensbidrag (refereegranskat)abstract
    • A parallel hybrid configuration is a feasible means to reduce fuel consumption of gas turbines propelling aircraft. It introduces an electric drive on one of the spools of the gas turbine, typically the low pressure spool. The electric drive is supplied by a battery, which can also be charged when excess power is available (for instance during conditions requiring handling bleed in conventional designs). It also requires a thermal management system to dissipate heat away from electric components. While the scientific literature describes parallel hybrid studies and anticipated benefits assuming various future entry into service dates, there is limited information on the design of the gas turbine component of such a system. For conventional gas turbines, multi-point design schemes are used. This paper describes, in a consistent fashion and based on a formalized notation, how such multi-point design schemes are applied to parallel hybrid aero engines. It interprets published approaches, fills gaps in methodology descriptions with meaningful assumptions and summarizes design intent. It also discusses cycle designs generated by different methodologies based on the same cycle model. Results show that closure equations prescribing boost power can be preferable over closure equations prescribing temperature ratios for uniqueness and engineering intuitiveness while the latter can be beneficial in a second step for design space exploration. 
  •  
5.
  • Sielemann, M., et al. (författare)
  • ON the SHAFT SPEED SELECTION of PARALLEL HYBRID AERO ENGINES
  • 2021
  • Ingår i: Proceedings of the ASME Turbo Expo. - : American Society of Mechanical Engineers (ASME). - 9780791884898 ; 1
  • Konferensbidrag (refereegranskat)abstract
    • The boosted turbo fan or parallel hybrid is a promising means to reduce fuel consumption of gas turbines on aircraft. With an electric drive on the low-pressure spool of the gas turbine, it requires a trade-off between the characteristics of the gas turbine and the electric power sub-systems. Reducing specific thrust at a given thrust requirement results in a larger fan with a lower pressure ratio. This leads to improved propulsive efficiency but at the expense of increased weight and nacelle drag. At a given design relative tip Mach number, increasing fan size and hence tip diameter means the fan shaft speed will need to be reduced. This will, according to occasionally quoted rules of thumb', make the directly coupled electrical drive more efficient but heavier. The objective of this paper is to expose some key aspects of this trade-off in terms of efficiency and weight, and relate them to these guidelines. The paper applies sophisticated methodology in both addressed domains. For the gas turbine, multi-point design is used. Here, established synthesis matching schemes focusing on gas turbine performance parameters are extended with parameters from the sizing and weight estimation such as diameters and tip speeds. For the electrical machine, fully analytical sizing capturing the impact of cooling supply is used. The paper reports estimated gas path and machine geometries. It gives an understanding of the interactions between both sub-systems and allows concluding which low pressure spool speed gives the best instantaneous performance. It largely confirms the quoted rules of thumb but exposes that the factors affecting machine efficiency are more involved than implied for an integrated design.
  •  
6.
  • Zhao, Xin, 1986, et al. (författare)
  • Assessment of the performance potential for a two-pass cross flow intercooler for aero engine applications
  • 2013
  • Ingår i: International Society for Airbreathing Engines, ISABE, Busan, South Korea, 2013, ( ISABE-2013-1215 ).
  • Konferensbidrag (refereegranskat)abstract
    • Intercoolers have recently received a considerable attention as a means to improve aero engine efficiency. Intercoolers have the potential to improve engine SFC, ease the design of an efficient turbine cooling system by reducing compressor exit temperatures and hence cooling air temperatures, as well as reducing NOx emissions. Intercooling may also provide benefits by increasing the specific output of the engine core and therefore reduce total engine weight. The performance potential for a two-pass cross flow intercooler has been estimated through an analysis of a long range mission for a geared turbofan engine. The application of a set of CFD based correlations allows the simultaneous coupled optimization of the intercooler conceptual design parameters and the engine design. The coolant air for the intercooler is ejected through a separate variable exhaust nozzle which is used to optimize the engine performance in cruise. By comparing the optimized intercooled geared engine with an optimized advanced non-intercooled geared engine, a reduction of 4.8% fuel burn is observed.
  •  
7.
  • Zhao, Xin, 1986, et al. (författare)
  • Off-design performance analysis of hybridised aircraft gas turbine
  • 2019
  • Ingår i: Aeronautical Journal. - : Cambridge University Press (CUP). - 0001-9240 .- 2059-6464. ; 123:1270, s. 1999-2018
  • Tidskriftsartikel (refereegranskat)abstract
    • An advanced geared turbofan with year 2035 technology level assumptions was established and used for the hybridisation study in this paper. By boosting the low-speed shaft of the turbofan with electrical power through the accessory gearbox, a parallel hybrid concept was set up. Focusing on the off-design performance of the hybridised gas turbine, electrical power input to the shaft, defined as positive hybridisation in this context, generally moves the compressor operation towards surge. On the other hand, the negative hybridisation, which is to reverse the power flow direction can improve the part-load operations of the turbofan and minimise the use of compressor handling bleeds. For the pre-defined mission given in the paper, negative hybridisation of descent, approach and landing, and taxi operations with 580 kW, 240 kW and 650 kW, respectively was found sufficient to keep a minimum compressor surge margin requirement without handling bleed. Looking at the hybridisation of key operating points, boosting the cruise operation of the baseline geared turbofan is, however, detrimental to the engine efficiency as it is pushing the cruise operation further away from the energy optimal design point. Without major modifications to the engine design, the benefit of the hybridisation appears primarily at the thermomechanical design point, the hot-day take-off. With the constraint of the turbine blade metal temperature in mind, a 500kW positive hybridisation at hot-day take-off gave cruise specific fuel consumption (SFC) reduction up to 0.5%, mainly because of reduced cooling flow requirement. Through the introduction of typical electrical power system performance characteristics and engine performance exchange rates, a first principles assessment is illustrated. By applying the strategies discussed in the paper, a 3% reduction in block fuel burn can be expected, if a higher power density electrical power system can be achieved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy