SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Löndahl Jakob) ;pers:(Boor Brandon E.)"

Sökning: WFRF:(Löndahl Jakob) > Boor Brandon E.

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hussein, Tareq, et al. (författare)
  • Indoor Particle Concentrations, Size Distributions, and Exposures in Middle Eastern Microenvironments
  • 2019
  • Ingår i: Atmosphere. - : MDPI AG. - 2073-4433. ; 11:1, s. 1-23
  • Tidskriftsartikel (refereegranskat)abstract
    • There is limited research on indoor air quality in the Middle East. In this study, concentrations and size distributions of indoor particles were measured in eight Jordanian dwellings during the winter and summer. Supplemental measurements of selected gaseous pollutants were also conducted. Indoor cooking, heating via the combustion of natural gas and kerosene, and tobacco/shisha smoking were associated with significant increases in the concentrations of ultrafine, fine, and coarse particles. Particle number (PN) and particle mass (PM) size distributions varied with the different indoor emission sources and among the eight dwellings. Natural gas cooking and natural gas or kerosene heaters were associated with PN concentrations on the order of 100,000 to 400,000 cm−3 and PM2.5 concentrations often in the range of 10 to 150 µg/m3. Tobacco and shisha (waterpipe or hookah) smoking, the latter of which is common in Jordan, were found to be strong emitters of indoor ultrafine and fine particles in the dwellings. Non-combustion cooking activities emitted comparably less PN and PM2.5. Indoor cooking and combustion processes were also found to increase concentrations of carbon monoxide, nitrogen dioxide, and volatile organic compounds. In general, concentrations of indoor particles were lower during the summer compared to the winter. In the absence of indoor activities, indoor PN and PM2.5 concentrations were generally below 10,000 cm−3 and 30 µg/m3, respectively. Collectively, the results suggest that Jordanian indoor environments can be heavily polluted when compared to the surrounding outdoor atmosphere primarily due to the ubiquity of indoor combustion associated with cooking, heating, and smoking.
  •  
2.
  • Hussein, Tareq, et al. (författare)
  • Regional inhaled deposited dose of indoor combustion-generated aerosols in jordanian urban homes
  • 2020
  • Ingår i: Atmosphere. - : MDPI AG. - 2073-4433. ; 11:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Indoor combustion processes associated with cooking, heating, and smoking are a major source of aerosols in Jordanian dwellings. To evaluate human exposure to combustion-generated aerosols in Jordanian indoor environments, regional inhaled deposited dose rates of indoor aerosols (10 nm to 25 µm) were determined for different scenarios for adult occupants. The inhaled deposited dose rate provides an estimate of the number or mass of inhaled aerosol that deposits in each region of the respiratory system per unit time. In general, sub-micron particle number (PN1) dose rates ranged from 109 to 1012 particles/h, fine particle mass (PM2.5) dose rates ranged from 3 to 216 µg/h, and coarse particle mass (PM10) dose rates ranged from 30 to 1600 µg/h. Dose rates were found to be dependent on the type and intensity of indoor combustion processes documented in the home. Dose rates were highest during cooking activities using a natural gas stove, heating via natural gas and kerosene, and smoking (shisha/tobacco). The relative fraction of the total dose rate received in the head airways, tracheobronchial, and alveolar regions varied among the documented indoor combustion (and non-combustion) activities. The significant fraction of sub-100 nm particles produced during the indoor combustion processes resulted in high particle number dose rates for the alveolar region. Suggested approaches for reducing indoor aerosol dose rates in Jordanian dwellings include a reduction in the prevalence of indoor combustion sources, use of extraction hoods to remove combustion products, and improved ventilation/filtration in residential buildings.
  •  
3.
  • Hussein, Tareq, et al. (författare)
  • Regional inhaled deposited dose of urban aerosols in an eastern Mediterranean city
  • 2019
  • Ingår i: Atmosphere. - : MDPI AG. - 2073-4433. ; 10:9
  • Tidskriftsartikel (refereegranskat)abstract
    • We calculated the regional deposited dose of inhaled particulate matter based on number/mass concentrations in Amman, Jordan. The dose rate was the highest during exercising but was generally lower for females compared to males. The fine particles dose rate was 1010-1011 particles/h (101-102 μg/h). The PM10 dose rate was 49-439 μg/h for males and 36-381 μg/h for females. While resting, the PM10 deposited in the head airways was 67-77% and 8-12% in the tracheobronchial region. When exercising, the head airways received 37-44% of the PM10, whereas the tracheobronchial region received 31-35%. About 8% (exercise) and 14-16% (rest) of the PM2.5 was received in the head airways, whereas the alveolar received 74-76% (exercise) and 54-62% (rest). Extending the results for common exposure scenarios in the city revealed alarming results for service workers and police officers; they might receive 50 μg/h PM2.5 and 220 μg/h PM10 while doing their duty on main roads adjacent to traffic. This is especially critical for a pregnant police officer. Outdoor athletic activities (e.g., jogging along main roads) are associated with high PM2.5 and PM10 dose rates (100 μg/h and ~425 μg/h, respectively).
  •  
4.
  • Koivisto, Antti Joonas, et al. (författare)
  • Evaluating the Theoretical Background of STOFFENMANAGER®and the Advanced REACH Tool
  • 2022
  • Ingår i: Annals of Work Exposures and Health. - : Oxford University Press (OUP). - 2398-7308 .- 2398-7316. ; 66:4, s. 520-536
  • Tidskriftsartikel (refereegranskat)abstract
    • STOFFENMANAGER® and the Advanced REACH Tool (ART) are recommended tools by the European Chemical Agency for regulatory chemical safety assessment. The models are widely used and accepted within the scientific community. STOFFENMANAGER® alone has more than 37 000 users globally and more than 310 000 risk assessment have been carried out by 2020. Regardless of their widespread use, this is the first study evaluating the theoretical backgrounds of each model. STOFFENMANAGER® and ART are based on a modified multiplicative model where an exposure base level (mg m-3) is replaced with a dimensionless intrinsic emission score and the exposure modifying factors are replaced with multipliers that are mainly based on subjective categories that are selected by using exposure taxonomy. The intrinsic emission is a unit of concentration to the substance emission potential that represents the concentration generated in a standardized task without local ventilation. Further information or scientific justification for this selection is not provided. The multipliers have mainly discrete values given in natural logarithm steps (⋯, 0.3, 1, 3, ⋯) that are allocated by expert judgements. The multipliers scientific reasoning or link to physical quantities is not reported. The models calculate a subjective exposure score, which is then translated to an exposure level (mg m-3) by using a calibration factor. The calibration factor is assigned by comparing the measured personal exposure levels with the exposure score that is calculated for the respective exposure scenarios. A mixed effect regression model was used to calculate correlation factors for four exposure group [e.g. dusts, vapors, mists (low-volatiles), and solid object/abrasion] by using ∼1000 measurements for STOFFENMANAGER® and 3000 measurements for ART. The measurement data for calibration are collected from different exposure groups. For example, for dusts the calibration data were pooled from exposure measurements sampled from pharmacies, bakeries, construction industry, and so on, which violates the empirical model basic principles. The calibration databases are not publicly available and thus their quality or subjective selections cannot be evaluated. STOFFENMANAGER® and ART can be classified as subjective categorization tools providing qualitative values as their outputs. By definition, STOFFENMANAGER® and ART cannot be classified as mechanistic models or empirical models. This modeling algorithm does not reflect the physical concept originally presented for the STOFFENMANAGER® and ART. A literature review showed that the models have been validated only at the 'operational analysis' level that describes the model usability. This review revealed that the accuracy of STOFFENMANAGER® is in the range of 100 000 and for ART 100. Calibration and validation studies have shown that typical log-transformed predicted exposure concentration and measured exposure levels often exhibit weak Pearson's correlations (r is <0.6) for both STOFFENMANAGER® and ART. Based on these limitations and performance departure from regulatory criteria for risk assessment models, it is recommended that STOFFENMANAGER® and ART regulatory acceptance for chemical safety decision making should be explicitly qualified as to their current deficiencies.
  •  
5.
  • Koivisto, Antti Joonas, et al. (författare)
  • Source specific exposure and risk assessment for indoor aerosols
  • 2019
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697. ; 668, s. 13-24
  • Tidskriftsartikel (refereegranskat)abstract
    • Poor air quality is a leading contributor to the global disease burden and total number of deaths worldwide. Humans spend most of their time in built environments where the majority of the inhalation exposure occurs. Indoor Air Quality (IAQ) is challenged by outdoor air pollution entering indoors through ventilation and infiltration and by indoor emission sources. The aim of this study was to understand the current knowledge level and gaps regarding effective approaches to improve IAQ. Emission regulations currently focus on outdoor emissions, whereas quantitative understanding of emissions from indoor sources is generally lacking. Therefore, specific indoor sources need to be identified, characterized, and quantified according to their environmental and human health impact. The emission sources should be stored in terms of relevant metrics and statistics in an easily accessible format that is applicable for source specific exposure assessment by using mathematical mass balance modelings. This forms a foundation for comprehensive risk assessment and efficient interventions. For such a general exposure assessment model we need 1) systematic methods for indoor aerosol emission source assessment, 2) source emission documentation in terms of relevant a) aerosol metrics and b) biological metrics, 3) default model parameterization for predictive exposure modeling, 4) other needs related to aerosol characterization techniques and modeling methods. Such a general exposure assessment model can be applicable for private, public, and occupational indoor exposure assessment, making it a valuable tool for public health professionals, product safety designers, industrial hygienists, building scientists, and environmental consultants working in the field of IAQ and health.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy