SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Löndahl Jakob) ;pers:(Roldin Pontus)"

Search: WFRF:(Löndahl Jakob) > Roldin Pontus

  • Result 1-10 of 10
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Ahlberg, Erik, et al. (author)
  • "Vi klimatforskare stödjer Greta och skolungdomarna"
  • 2019
  • In: Dagens nyheter (DN debatt). - 1101-2447.
  • Journal article (pop. science, debate, etc.)abstract
    • DN DEBATT 15/3. Sedan industrialiseringens början har vi använt omkring fyra femtedelar av den mängd fossilt kol som får förbrännas för att vi ska klara Parisavtalet. Vi har bara en femtedel kvar och det är bråttom att kraftigt reducera utsläppen. Det har Greta Thunberg och de strejkande ungdomarna förstått. Därför stödjer vi deras krav, skriver 270 klimatforskare.
  •  
3.
  •  
4.
  • Nordin, E. Z., et al. (author)
  • Secondary organic aerosol formation from gasoline passenger vehicle emissions investigated in a smog chamber
  • 2012
  • In: Atmospheric Chemistry and Physics Discussions. - : Copernicus Publications. - 1680-7367 .- 1680-7375. ; 12:12, s. 31725-31765
  • Journal article (peer-reviewed)abstract
    • Gasoline vehicles have elevated emissions of volatile organic compounds during cold starts and idling and have recently been pointed out as potentially the main source of anthropogenic secondary organic aerosol (SOA) in megacities. However, there is a lack of laboratory studies to systematically investigate SOA formation in real-world exhaust. In this study, SOA formation from pure aromatic precursors, idling and cold start gasoline exhaust from one Euro II, one Euro III and one Euro IV passenger vehicles were investigated using photo-oxidation experiments in a 6 m3 smog chamber. The experiments were carried out at atmospherically relevant organic aerosol mass concentrations. The characterization methods included a high resolution aerosol mass spectrometer and a proton transfer mass spectrometer. It was found that gasoline exhaust readily forms SOA with a signature aerosol mass spectrum similar to the oxidized organic aerosol that commonly dominates the organic aerosol mass spectra downwind urban areas. After 4 h aging the formed SOA was 1–2 orders of magnitude higher than the Primary OA emissions. The SOA mass spectrum from a relevant mixture of traditional light aromatic precursors gave f43 (mass fraction at m/z = 4 3) approximately two times higher than to the gasoline SOA. However O : C and H : C ratios were similar for the two cases. Classical C6–C9 light aromatic precursors were responsible for up to 60% of the formed SOA, which is significantly higher than for diesel exhaust. Important candidates for additional precursors are higher order aromatic compounds such as C10, C11 light aromatics, naphthalene and methyl-naphthalenes.
  •  
5.
  • Roldin, Pontus, et al. (author)
  • Aerosol ageing in an urban plume - implication for climate
  • 2011
  • In: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7324. ; 11:12, s. 5897-5915
  • Journal article (peer-reviewed)abstract
    • The climate effects downwind of an urban area resulting from gaseous and particulate emissions within the city are as yet inadequately quantified. The aim of this work was to estimate these effects for Malmo city in southern Sweden (population 280 000). The chemical and physical particle properties were simulated with a model for Aerosol Dynamics, gas phase CHEMistry and radiative transfer calculations (ADCHEM) following the trajectory movement from upwind of Malmo, through the urban background environment and finally tens and hundreds of kilometers downwind of Malmo. The model results were evaluated using measurements of the particle number size distribution and chemical composition. The total particle number concentration 50 km (similar to 3 h) downwind, in the center of the Malmo plume, is about 3700 cm(-3) of which the Malmo contribution is roughly 30%. Condensation of nitric acid, ammonium and to a smaller extent oxidized organic compounds formed from the emissions in Malmo increases the secondary aerosol formation with a maximum of 0.7-0.8 mu gm(-3) 6 to 18 h downwind of Malmo. The secondary mass contribution dominates over the primary soot contribution from Malmo already 3 to 4 h downwind of the emission sources and contributes to an enhanced total surface direct or indirect aerosol shortwave radiative forcing in the center of the urban plume ranging from -0.3 to -3.3 Wm(-2) depending on the distance from Malmo, and the specific cloud properties.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view