SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lövdén Martin) ;pers:(Garzón Benjamín)"

Sökning: WFRF:(Lövdén Martin) > Garzón Benjamín

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Garzon, Benjamin, et al. (författare)
  • Cortical changes during the learning of sequences of simultaneous finger presses
  • 2023
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The cortical alterations underpinning the acquisition of motor skills remain debated. In this longitudinal study in younger adults, we acquired performance and neuroimaging (7T MRI) measures weekly over the course of 6 weeks to investigate neural changes associated with learning sequences of simultaneous finger presses executed with the non-dominant hand. Both the intervention group (n = 33) and the control group (n = 30) showed general performance improvements, but performance improved more and became more consistent for sequences that were intensively trained by the intervention group, relative to those that were not. Brain activity for trained sequences decreased compared with untrained sequences in the bilateral parietal and premotor cortices. No training-related changes in the primary sensorimotor areas were detected. The similarity of activation patterns between trained and untrained sequences decreased in secondary, but not primary, sensorimotor areas, while the similarity of the activation patterns between different trained sequences did not show reliable changes. Neither the variability of activation patterns across trials, nor the estimates of brain structure displayed practice-related changes that reached statistical significance. Overall, the main correlate of learning configural sequences was a reduction in brain activity in secondary motor areas.
  •  
2.
  • Garzon, Benjamin, et al. (författare)
  • Cortical changes during the learning of sequences of simultaneous finger presses
  • 2023
  • Ingår i: Imaging Neuroscience. - 2837-6056. ; 1:1, s. 1-26
  • Tidskriftsartikel (refereegranskat)abstract
    • The cortical alterations underpinning the acquisition of motor skills remain debated. In this longitudinal study in younger adults, we acquired performance and neuroimaging (7 T MRI) measures weekly over the course of 6 weeks to investigate neural changes associated with learning sequences of simultaneous finger presses executed with the non-dominant hand. Both the intervention group (n = 33), which practiced the finger sequences at home, and thecontrol group (n = 30, no home practice) showed general performance improvements, but performance improved more and became more consistent for sequences that were intensively trained by the intervention group, relative to those that were not. Brain activity for trained sequences decreased compared with untrained sequences in the bilateral parietal and premotor cortices. No training-related changes in the primary sensorimotor areas were detected. The similarity of activation patterns between trained and untrained sequences decreased in secondary, but not primary, sensorimotor areas, while the similarity of the activation patterns between different trained sequences did not show reliable changes. Neither the variability of activation patterns across trials, nor the estimates of brain structure displayed practice-related changes that reached statistical significance. Overall, the main correlate of learning configural sequences was a reduction in brain activity in secondary motor areas.
  •  
3.
  • Garzón, Benjamín, et al. (författare)
  • Role of dopamine and gray matter density in aging effects and individual differences of functional connectomes
  • 2021
  • Ingår i: Brain Structure and Function. - : Springer Science and Business Media LLC. - 1863-2653 .- 1863-2661. ; 226, s. 743-758
  • Tidskriftsartikel (refereegranskat)abstract
    • With increasing age, functional connectomes become dissimilar across normal individuals, reflecting heterogenous aging effects on functional connectivity (FC). We investigated the distribution of these effects across the connectome and their relationship with age-related differences in dopamine (DA) D1 receptor availability and gray matter density (GMD). With this aim, we determined aging effects on mean and interindividual variance of FC using fMRI in 30 younger and 30 older healthy subjects and mapped the contribution of each connection to the patterns of age-related similarity loss. Aging effects on mean FC accounted mainly for the dissimilarity between connectomes of younger and older adults, and were related, across brain regions, to aging effects on DA D1 receptor availability. Aging effects on the variance of FC indicated a global increase in variance with advancing age, explained connectome dissimilarity among older subjects and were related to aging effects on variance of GMD. The relationship between aging and the similarity of connectomes can thus be partly explained by age differences in DA modulation and gray matter structure.
  •  
4.
  • Hansson, Boel, et al. (författare)
  • Decrease of 7T MR short-term effects with repeated exposure
  • 2024
  • Ingår i: NEURORADIOLOGY. - 0028-3940 .- 1432-1920. ; 66, s. 567-575
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose Although participants in 7 T magnetic resonance (MR) studies tolerate ultra-high field (UHF) well, subjectively experienced short-term effects, such as dizziness, inconsistent movement, nausea, or metallic taste, are reported. Evidence on subjectively experienced short-term effects in multiple exposures to UHF MR is scarce. The purpose of this study is to investigated experience of short-term effects, and occurrence of motion in healthy subjects exposed to seven weekly 7 T MR examinations.Methods A questionnaire on short-term effects was completed by participants in an fMRI motor skill study. Seven UHF MR examinations were conducted over 7 weeks (exposure number: 1 to 7). Changes of experienced short-term effects were analyzed. Motion in fMRI images was quantified.Results The questionnaire was completed 360 times by 67 participants after one to seven 7T MR examinations. Logistic mixed model analysis showed a significant association between dizziness, inconsistent movement, nausea, and headache and the examination numbers (p<0.03). Exposure to repeated examinations had no significant effect on peripheral nerve stimulation (PNS) or motion of the subjects. The overall experience of a 7T examination improved significantly (p<0.001) with increasing examination numbers.Conclusion During multiple 7T examinations, subjects adapt to the strong static field. The short-term effects dizziness, inconsistent movement, nausea, and headache decrease over time as the MR sessions continue and experienced comfort increases. There was no significant difference in motion during the multiple fMRI examinations.
  •  
5.
  • Lebedev, A. V., et al. (författare)
  • Psychedelic drug use and schizotypy in young adults
  • 2021
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite recently resurrected scientific interest in classical psychedelics, few studies have focused on potential harms associated with abuse of these substances. In particular, the link between psychedelic use and psychotic symptoms has been debated while no conclusive evidence has been presented. Here, we studied an adult population (n=1032) with a special focus on young (18-35 years) and healthy individuals (n=701) to evaluate the association of psychedelic drug use with schizotypy and evidence integration impairment typically observed in psychosis-spectrum disorders. Experimental behavioural testing was performed in a subsample of the subjects (n=39). We observed higher schizotypy scores in psychedelic users in the total sample. However, the effect size was notably small and only marginally significant when considering young and healthy subjects (Cohen's d=0.13). Controlling for concomitant drug use, none of our analyses found significant associations between psychedelic use and schizotypal traits. Results from experimental testing showed that total exposure to psychedelics (frequency and temporal proximity of use) was associated with better evidence integration (Cohen's d=0.13) and a higher sensitivity of fear responses (Cohen's d=1.05) to the effects instructed knowledge in a reversal aversive learning task modelled computationally with skin conductance response and pupillometry. This effect was present even when controlling for demographics and concomitant drug use. On a group level, however, only difference in sensitivity of fear responses to instructed knowledge reached statistical significance. Taken together, our findings suggest that psychedelic drug use is only weakly associated with psychosis-like symptoms, which, in turn, is to a large extent explained by psychiatric comorbidities and use of other psychoactive substances. Our results also suggest that psychedelics may have an effect on flexibility of evidence integration and aversive learning processes, that may be linked to recently suggested therapeutic effects of psychedelic drugs in non-psychotic psychiatric populations.
  •  
6.
  • Lövdén, Martin, 1972, et al. (författare)
  • Human Skill Learning: Expansion, Exploration, Selection, and Refinement
  • 2020
  • Ingår i: Current Opinion in Behavioral Sciences. - : Elsevier BV. - 2352-1546. ; 36, s. 163-168
  • Forskningsöversikt (refereegranskat)abstract
    • © 2020 The Authors Learning, or the process of acquiring knowledge and skill, allows humans to shape and adapt to their environments during development. Researchers have long theorized that the principal brain processes behind learning resemble a recruitment process. The brain initially explores an expanded pool of candidate neural circuits. Based on outcomes, the most promising candidate circuit is selected for refinement. Partly fuelled by new methods, the last decade of research on learning-related functional and structural changes in rodents has supported this theory, and, more recently, related evidence has started to emerge from human studies. We emphasize the need for formal theories and neurocomputational modelling of cortical plasticity to guide work on open issues, such as the link between functional and structural changes.
  •  
7.
  • Mediavilla, Tomás, et al. (författare)
  • Learning-related contraction of gray matter in rodent sensorimotor cortex is associated with adaptive myelination.
  • 2022
  • Ingår i: eLife. - : eLife Sciences Publications. - 2050-084X. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • From observations in rodents, it has been suggested that the cellular basis of learning-dependent changes, detected using structural MRI, may be increased dendritic spine density, alterations in astrocyte volume, and adaptations within intracortical myelin. Myelin plasticity is crucial for neurological function, and active myelination is required for learning and memory. However, the dynamics of myelin plasticity and how it relates to morphometric-based measurements of structural plasticity remains unknown. We used a motor skill learning paradigm in male mice to evaluate experience-dependent brain plasticity by voxel-based morphometry (VBM) in longitudinal MRI, combined with a cross-sectional immunohistochemical investigation. Whole-brain VBM revealed nonlinear decreases in gray matter volume (GMV) juxtaposed to nonlinear increases in white matter volume (WMV) within GM that were best modeled by an asymptotic time course. Using an atlas-based cortical mask, we found nonlinear changes with learning in primary and secondary motor areas and in somatosensory cortex. Analysis of cross-sectional myelin immunoreactivity in forelimb somatosensory cortex confirmed an increase in myelin immunoreactivity followed by a return towards baseline levels. Further investigations using quantitative confocal microscopy confirmed these changes specifically to the length density of myelinated axons. The absence of significant histological changes in cortical thickness suggests that nonlinear morphometric changes are likely due to changes in intracortical myelin for which morphometric WMV in somatosensory cortex significantly correlated with myelin immunoreactivity. Together, these observations indicate a nonlinear increase of intracortical myelin during learning and support the hypothesis that myelin is a component of structural changes observed by VBM during learning.
  •  
8.
  • Meyer, Kristina, et al. (författare)
  • Are global and specific interindividual differences in cortical thickness associated with facets of cognitive abilities, including face cognition?
  • 2019
  • Ingår i: Royal Society Open Science. - : The Royal Society. - 2054-5703. ; 6:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Face cognition (FC) is a specific ability that cannot be fully explained by general cognitive functions. Cortical thickness (CT) is a neural correlate of performance and learning. In this registered report, we used data from the Human Connectome Project (HCP) to investigate the relationship between CT in the core brain network of FC and performance on a psychometric task battery, including tasks with facial content. Using structural equation modelling (SEM), we tested the existence of face-specific interindividual differences at behavioural and neural levels. The measurement models include general and face-specific factors of performance and CT. There was no face-specificity in CT in functionally localized areas. In post hoc analyses, we compared the preregistered, small regions of interest (ROIs) to larger, non-individualized ROIs and identified a face-specific CT factor when large ROIs were considered. We show that this was probably due to low reliability of CT in the functional localization (intra-class correlation coefficients (ICC) between 0.72 and 0.85). Furthermore, general cognitive ability, but not face-specific performance, could be predicted by latent factors of CT with a small effect size. In conclusion, for the core brain network of FC, we provide exploratory evidence (in need of cross-validation) that areas of the cortex sharing a functional purpose did also share morphological properties as measured by CT.
  •  
9.
  • Nilsson, Jonna, et al. (författare)
  • Second Language Learning in Older Adults: Effects on Brain Structure and Predictors of Learning Success
  • 2021
  • Ingår i: Frontiers in Aging Neuroscience. - : Frontiers Media SA. - 1663-4365. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • It has previously been demonstrated that short-term foreign language learning can lead to structural brain changes in younger adults. Experience-dependent brain plasticity is known to be possible also in older age, but the specific effect of foreign language learning on brain structure in language-and memory-relevant regions in the old brain remains unknown. In the present study, 160 older Swedish adults (65-75 years) were randomized to complete either an entry-level Italian course or a relaxation course, both with a total duration of 11 weeks. Structural MRI scans were conducted before and after the intervention in a subset of participants to test for differential change in gray matter in the two groups in the inferior frontal gyrus, the superior temporal gyrus, and the hippocampus, and in white matter microstructure in the superior longitudinal fasciculus (SLF), inferior longitudinal fasciculus (ILF), fronto-occipital fasciculus, and the hippocampal (HC) section of the cingulum. The study found no evidence for differential structural change following language training, independent of achieved vocabulary proficiency. However, hippocampal volume and associative memory ability before the intervention were found to be robust predictors of vocabulary proficiency at the end of the language course. The results suggest that having greater hippocampal volume and better associative memory ability benefits vocabulary learning in old age but that the very initial stage of foreign language learning does not trigger detectable changes in brain morphometry in old age.
  •  
10.
  • Olivo, Gaia, et al. (författare)
  • Higher VO(2)max is associated with thicker cortex and lower grey matter blood flow in older adults
  • 2021
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • VO(2)max (maximal oxygen consumption), a validated measure of aerobic fitness, has been associated with better cerebral artery compliance and measures of brain morphology, such as higher cortical thickness (CT) in frontal, temporal and cingular cortices, and larger grey matter volume (GMV) of the middle temporal gyrus, hippocampus, orbitofrontal cortex and cingulate cortex. Single sessions of physical exercise can promptly enhance cognitive performance and brain activity during executive tasks. However, the immediate effects of exercise on macro-scale properties of the brain's grey matter remain unclear. We investigated the impact of one session of moderate-intensity physical exercise, compared with rest, on grey matter volume, cortical thickness, working memory performance, and task-related brain activity in older adults. Cross-sectional associations between brain measures and VO(2)max were also tested. Exercise did not induce statistically significant changes in brain activity, grey matter volume, or cortical thickness. Cardiovascular fitness, measured by VO(2)max, was associated with lower grey matter blood flow in the left hippocampus and thicker cortex in the left superior temporal gyrus. Cortical thickness was reduced at post-test independent of exercise/rest. Our findings support that (1) fitter individuals may need lower grey matter blood flow to meet metabolic oxygen demand, and (2) have thicker cortex.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy