SwePub
Sök i SwePub databas

  form:Ext_t

Träfflista för sökning "WFRF:(Laakso Markku) "

form:Search_simp_t: WFRF:(Laakso Markku)

  • navigation:Result_t 1-10 navigation:of_t 122
hitlist:Modify_result_t
   
hitlist:Enumeration_thitlist:Reference_thitlist:Reference_picture_thitlist:Find_Mark_t
1.
  • Speliotes, Elizabeth K., et al. (creator_code:aut_t)
  • Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index
  • 2010
  • record:In_t: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 42:11, s. 937-948
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • Obesity is globally prevalent and highly heritable, but its underlying genetic factors remain largely elusive. To identify genetic loci for obesity susceptibility, we examined associations between body mass index and ~2.8 million SNPs in up to 123,865 individuals with targeted follow up of 42 SNPs in up to 125,931 additional individuals. We confirmed 14 known obesity susceptibility loci and identified 18 new loci associated with body mass index (P < 5 × 10−8), one of which includes a copy number variant near GPRC5B. Some loci (at MC4R, POMC, SH2B1 and BDNF) map near key hypothalamic regulators of energy balance, and one of these loci is near GIPR, an incretin receptor. Furthermore, genes in other newly associated loci may provide new insights into human body weight regulation.
  •  
2.
  • Berndt, Sonja I., et al. (creator_code:aut_t)
  • Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture
  • 2013
  • record:In_t: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 45:5, s. 501-U69
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • Approaches exploiting trait distribution extremes may be used to identify loci associated with common traits, but it is unknown whether these loci are generalizable to the broader population. In a genome-wide search for loci associated with the upper versus the lower 5th percentiles of body mass index, height and waist-to-hip ratio, as well as clinical classes of obesity, including up to 263,407 individuals of European ancestry, we identified 4 new loci (IGFBP4, H6PD, RSRC1 and PPP2R2A) influencing height detected in the distribution tails and 7 new loci (HNF4G, RPTOR, GNAT2, MRPS33P4, ADCY9, HS6ST3 and ZZZ3) for clinical classes of obesity. Further, we find a large overlap in genetic structure and the distribution of variants between traits based on extremes and the general population and little etiological heterogeneity between obesity subgroups.
  •  
3.
  • Heid, Iris M, et al. (creator_code:aut_t)
  • Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution
  • 2010
  • record:In_t: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 42:11, s. 949-960
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • Waist-hip ratio (WHR) is a measure of body fat distribution and a predictor of metabolic consequences independent of overall adiposity. WHR is heritable, but few genetic variants influencing this trait have been identified. We conducted a meta-analysis of 32 genome-wide association studies for WHR adjusted for body mass index (comprising up to 77,167 participants), following up 16 loci in an additional 29 studies (comprising up to 113,636 subjects). We identified 13 new loci in or near RSPO3, VEGFA, TBX15-WARS2, NFE2L3, GRB14, DNM3-PIGC, ITPR2-SSPN, LY86, HOXC13, ADAMTS9, ZNRF3-KREMEN1, NISCH-STAB1 and CPEB4 (P = 1.9 × 10⁻⁹ to P = 1.8 × 10⁻⁴⁰) and the known signal at LYPLAL1. Seven of these loci exhibited marked sexual dimorphism, all with a stronger effect on WHR in women than men (P for sex difference = 1.9 × 10⁻³ to P = 1.2 × 10⁻¹³). These findings provide evidence for multiple loci that modulate body fat distribution independent of overall adiposity and reveal strong gene-by-sex interactions.
  •  
4.
  • Joshi, Peter K, et al. (creator_code:aut_t)
  • Directional dominance on stature and cognition in diverse human populations
  • 2015
  • record:In_t: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 523:7561, s. 459-462
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • Homozygosity has long been associated with rare, often devastating, Mendelian disorders, and Darwin was one of the first to recognize that inbreeding reduces evolutionary fitness. However, the effect of the more distant parental relatedness that is common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power. Here we use runs of homozygosity to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts, and find statistically significant associations between summed runs of homozygosity and four complex traits: height, forced expiratory lung volume in one second, general cognitive ability and educational attainment (P < 1 × 10(-300), 2.1 × 10(-6), 2.5 × 10(-10) and 1.8 × 10(-10), respectively). In each case, increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months' less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing evidence that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been.
  •  
5.
  • Jørgenrud, Benedicte, et al. (creator_code:aut_t)
  • The Metabolome in Finnish Carriers of the MYBPC3-Q1061X Mutation for Hypertrophic Cardiomyopathy
  • 2015
  • record:In_t: PLOS ONE. - : PLOS One. - 1932-6203. ; 10:8
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • AIMS: Mutations in the cardiac myosin-binding protein C gene (MYBPC3) are the most common genetic cause of hypertrophic cardiomyopathy (HCM) worldwide. The molecular mechanisms leading to HCM are poorly understood. We investigated the metabolic profiles of mutation carriers with the HCM-causing MYBPC3-Q1061X mutation with and without left ventricular hypertrophy (LVH) and non-affected relatives, and the association of the metabolome to the echocardiographic parameters.METHODS AND RESULTS: 34 hypertrophic subjects carrying the MYBPC3-Q1061X mutation, 19 non-hypertrophic mutation carriers and 20 relatives with neither mutation nor hypertrophy were examined using comprehensive echocardiography. Plasma was analyzed for molecular lipids and polar metabolites using two metabolomics platforms. Concentrations of branched chain amino acids, triglycerides and ether phospholipids were increased in mutation carriers with hypertrophy as compared to controls and non-hypertrophic mutation carriers, and correlated with echocardiographic LVH and signs of diastolic and systolic dysfunction in subjects with the MYBPC3-Q1061X mutation.CONCLUSIONS: Our study implicates the potential role of branched chain amino acids, triglycerides and ether phospholipids in HCM, as well as suggests an association of these metabolites with remodeling and dysfunction of the left ventricle.
  •  
6.
  • Koikkalainen, Juha R., et al. (creator_code:aut_t)
  • Early familial dilated cardiomyopathy : identification with determination of disease state parameter from cine MR image data
  • 2008
  • record:In_t: Radiology. - : Radiological Society of North America, Inc. - 0033-8419 .- 1527-1315. ; 249:1, s. 88-96
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • PURPOSE: To characterize early changes in cardiac anatomy and function for lamin A/C gene (LMNA) mutation carriers by using magnetic resonance (MR) imaging and to develop tools to analyze and visualize the findings.MATERIALS AND METHODS: The ethical review board of the institution approved the study, and informed written consent was obtained. The patient group consisted of 12 subjects, seven women (mean age, 36 years; age range, 18-54 years) and five men (mean age, 28 years; age range, 18-39 years) of Finnish origin, who were each heterozygotes with one LMNA mutation that may cause familial dilated cardiomyopathy (DCM). All the subjects were judged to be healthy with transthoracic echocardiography. The control group consisted of 14 healthy subjects, 11 women (mean age, 41 years; range, 23-54 years) and three men (mean age, 45 years; range, 34-57 years), of Finnish origin. Cine steady state free precession MR imaging was performed with a 1.5-T system. The volumes, wall thickness, and wall motion of both left ventricle (LV) and right ventricle were assessed. A method combining multiple MR image parameters was used to generate a global cardiac function index, the disease state parameter (DSP). A visual fingerprint was generated to assess the severity of familial DCM.RESULTS: The mean DSP of the patient group (0.69 +/- 0.15 [standard deviation]) was significantly higher than that of the control group (0.32 +/- 0.13) (P = .00002). One subject had an enlarged LV.CONCLUSION: Subclinical familial DCM was identified by determination of the DSP with MR imaging, and this method might be used to recognize familial DCM at an early stage.
  •  
7.
  • Locke, Adam E, et al. (creator_code:aut_t)
  • Genetic studies of body mass index yield new insights for obesity biology.
  • 2015
  • record:In_t: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 518:7538, s. 197-401
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10(-8)), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ∼2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.
  •  
8.
  • Lu, Yingchang, et al. (creator_code:aut_t)
  • New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk
  • 2016
  • record:In_t: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • To increase our understanding of the genetic basis of adiposity and its links to cardiometabolic disease risk, we conducted a genome-wide association meta-analysis of body fat percentage (BF%) in up to 100,716 individuals. Twelve loci reached genome-wide significance (P<5 × 10(-8)), of which eight were previously associated with increased overall adiposity (BMI, BF%) and four (in or near COBLL1/GRB14, IGF2BP1, PLA2G6, CRTC1) were novel associations with BF%. Seven loci showed a larger effect on BF% than on BMI, suggestive of a primary association with adiposity, while five loci showed larger effects on BMI than on BF%, suggesting association with both fat and lean mass. In particular, the loci more strongly associated with BF% showed distinct cross-phenotype association signatures with a range of cardiometabolic traits revealing new insights in the link between adiposity and disease risk.
  •  
9.
  • Ried, Janina S., et al. (creator_code:aut_t)
  • A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape
  • 2016
  • record:In_t: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates averaged PCs (AvPCs) representing body shape derived from six anthropometric traits (body mass index, height, weight, waist and hip circumference, waist-to-hip ratio). The first four AvPCs explain >99% of the variability, are heritable, and associate with cardiometabolic outcomes. We performed genome-wide association analyses for each body shape composite phenotype across 65 studies and meta-analysed summary statistics. We identify six novel loci: LEMD2 and CD47 for AvPC1, RPS6KA5/C14orf159 and GANAB for AvPC3, and ARL15 and ANP32 for AvPC4. Our findings highlight the value of using multiple traits to define complex phenotypes for discovery, which are not captured by single-trait analyses, and may shed light onto new pathways.
  •  
10.
  • Shungin, Dmitry, et al. (creator_code:aut_t)
  • New genetic loci link adipose and insulin biology to body fat distribution.
  • 2015
  • record:In_t: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 518:7538, s. 187-378
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.
  •  
Skapa referenser, mejla, bekava och länka
  • navigation:Result_t 1-10 navigation:of_t 122
swepub:Mat_t
swepub:mat_article_t (119)
swepub:mat_publicationother_t (1)
swepub:mat_conferencepaper_t (1)
swepub:mat_researchreview_t (1)
swepub:Level_t
swepub:level_refereed_t (120)
swepub:level_scientificother_t (2)
swepub:Hitlist_author_t
Laakso, Markku (114)
Boehnke, Michael (66)
Kuusisto, Johanna (65)
Wareham, Nicholas J. (58)
Groop, Leif (55)
McCarthy, Mark I (55)
deldatabas:search_more_t
Mohlke, Karen L (54)
Langenberg, Claudia (51)
Tuomilehto, Jaakko (50)
Jackson, Anne U. (48)
Hansen, Torben (47)
Pedersen, Oluf (45)
Lind, Lars (44)
Loos, Ruth J F (44)
Salomaa, Veikko (43)
Lindgren, Cecilia M. (42)
Walker, Mark (40)
Collins, Francis S. (40)
Morris, Andrew P. (40)
Luan, Jian'an (39)
Barroso, Ines (37)
Mahajan, Anubha (36)
Frayling, Timothy M (36)
Stancáková, Alena (35)
Palmer, Colin N. A. (35)
Grarup, Niels (34)
Gieger, Christian (34)
Deloukas, Panos (33)
Franks, Paul W. (33)
Grallert, Harald (33)
Ingelsson, Erik (32)
Stefansson, Kari (32)
Hayward, Caroline (32)
Gudnason, Vilmundur (32)
van Duijn, Cornelia ... (31)
Scott, Robert A (31)
Thorleifsson, Gudmar (31)
Bonnycastle, Lori L. (31)
Thorsteinsdottir, Un ... (30)
Rotter, Jerome I. (30)
Morris, Andrew D (30)
Zhang, Weihua (30)
Tuomi, Tiinamaija (29)
Perola, Markus (29)
Rudan, Igor (29)
Hattersley, Andrew T (29)
Froguel, Philippe (29)
Uitterlinden, André ... (29)
Boerwinkle, Eric (29)
Esko, Tonu (29)
deldatabas:search_less_t
swepub:Hitlist_uni_t
swepub_uni:lu_t (69)
swepub_uni:uu_t (45)
swepub_uni:umu_t (33)
swepub_uni:ki_t (16)
swepub_uni:gu_t (13)
swepub_uni:su_t (7)
deldatabas:search_more_t
swepub_uni:kth_t (5)
swepub_uni:oru_t (5)
swepub_uni:hh_t (1)
swepub_uni:liu_t (1)
deldatabas:search_less_t
hitlist:Language_t
language:Eng_t (121)
language:Fin_t (1)
hitlist:HSV_t
hsv:Cat_3_t (97)
hsv:Cat_1_t (10)

hitlist:Year_t

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt tools:Close_t

tools:Permalink_label_t