SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ladenvall Claes) "

Sökning: WFRF:(Ladenvall Claes)

  • Resultat 1-10 av 60
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Fadista, Joao, et al. (författare)
  • Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism.
  • 2014
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 111:38, s. 13924-13929
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic variation can modulate gene expression, and thereby phenotypic variation and susceptibility to complex diseases such as type 2 diabetes (T2D). Here we harnessed the potential of DNA and RNA sequencing in human pancreatic islets from 89 deceased donors to identify genes of potential importance in the pathogenesis of T2D. We present a catalog of genetic variants regulating gene expression (eQTL) and exon use (sQTL), including many long noncoding RNAs, which are enriched in known T2D-associated loci. Of 35 eQTL genes, whose expression differed between normoglycemic and hyperglycemic individuals, siRNA of tetraspanin 33 (TSPAN33), 5'-nucleotidase, ecto (NT5E), transmembrane emp24 protein transport domain containing 6 (TMED6), and p21 protein activated kinase 7 (PAK7) in INS1 cells resulted in reduced glucose-stimulated insulin secretion. In addition, we provide a genome-wide catalog of allelic expression imbalance, which is also enriched in known T2D-associated loci. Notably, allelic imbalance in paternally expressed gene 3 (PEG3) was associated with its promoter methylation and T2D status. Finally, RNA editing events were less common in islets than previously suggested in other tissues. Taken together, this study provides new insights into the complexity of gene regulation in human pancreatic islets and better understanding of how genetic variation can influence glucose metabolism.
  •  
3.
  • Jood, Katarina, 1966, et al. (författare)
  • Fibrinolytic gene polymorphism and ischemic stroke
  • 2005
  • Ingår i: Stroke. - 0039-2499 .- 1524-4628. ; 36:10, s. 2077-81
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND AND PURPOSE: The tissue-type plasminogen activator (tPA) -7351C>T and the plasminogen activator inhibitor type 1 (PAI-1) -675 4G>5G polymorphisms influence transcriptional activity. Both variants have been associated with myocardial infarction, with increased risk for the T and 4G allele, respectively. In this study we investigated the possible association between these polymorphisms, the respective plasma protein levels, and ischemic stroke. METHODS: In the Sahlgrenska Academy Study on Ischemic Stroke (SAHLSIS), 600 patients with acute ischemic stroke aged 18 to 69 years and 600 matched community controls were recruited. Stroke subtype was determined using Trial of Org 10172 in Acute Treatment criteria. RESULTS: There were no associations between individual genetic variants and ischemic stroke. The multivariate-adjusted odds ratio for overall ischemic stroke was 1.11 (95% CI 0.87 to 1.43) for tPA T allele carriers, and 0.84 (95% CI, 0.64 to 1.11) for subjects homozygous for the PAI-1 4G allele. When genotypes were combined, a protective effect for the tPA CC/PAI-1 4G4G genotype combination was observed (odds ratio 0.65, 95% CI 0.43 to 0.98; P<0.05). Plasma levels of tPA and PAI-1 antigen at follow-up were independently associated with overall ischemic stroke. tPA-antigen differed by stroke subtype and was highest among those with large-vessel disease and cardioembolic stroke. CONCLUSIONS: Neither the tPA -7351C>T nor the PAI-1 to 675 4G>5G polymorphism showed significant association with ischemic stroke. For the tPA CC/PAI-1 4G4G genotype combination, a protective effect was observed. Collectively, these results are consistent with a more complex role for tPA and PAI-1 in the brain as compared with the heart.
  •  
4.
  • Ladenvall, Claes, 1974, et al. (författare)
  • Serum C-reactive protein concentration and genotype in relation to ischemic stroke subtype
  • 2006
  • Ingår i: Stroke. - 0039-2499 .- 1524-4628. ; 37:8, s. 2018-23
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND AND PURPOSE: C-reactive protein (CRP) has evolved as an inflammatory risk marker of cardiovascular disease. Several single-nucleotide polymorphisms at the CRP locus have been found to be associated with CRP levels. The aim of the present study was to investigate CRP levels and genetic variants in etiological subtypes of ischemic stroke. METHODS: The Sahlgrenska Academy Study on Ischemic Stroke (SAHLSIS) comprises 600 consecutive ischemic stroke cases (18 to 69 years) and 600 matched controls from western Sweden. Stroke subtypes were defined by the TOAST classification. Serum CRP levels were determined by a high-sensitivity immunometric assay. RESULTS: CRP levels were significantly higher for all ischemic stroke subtypes compared with controls, both in the acute phase and at the 3-month follow-up. After adjustment for traditional risk factors, CRP at follow-up was related to higher odds ratios (ORs) of overall ischemic stroke (OR, 1.25; 95% CI, 1.09 to 1.43) and large-vessel disease (OR, 1.48; 95% CI, 1.09 to 2.00). The CRP -286C>T>A, 1059G>C, and 1444C>T single-nucleotide polymorphisms showed significant associations with CRP levels. However, neither CRP genotypes nor haplotypes showed an association to overall ischemic stroke. CONCLUSIONS: This is the first large study on CRP in different TOAST subtypes in a young ischemic stroke population. CRP levels differed between etiological subtypes of ischemic stroke both in the acute phase and at the 3-month follow-up. CRP at follow-up was associated with overall ischemic stroke and the large-vessel disease subtype. Genetic variants at the CRP locus were associated with CRP levels, but no association was detected for overall ischemic stroke.
  •  
5.
  • Prasad, Rashmi B., et al. (författare)
  • Excess maternal transmission of variants in the THADA gene to offspring with type 2 diabetes
  • 2016
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 59:8, s. 1702-1713
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis: Genome-wide association studies (GWAS) have identified more than 65 genetic loci associated with risk of type 2 diabetes. However, the contribution of distorted parental transmission of alleles to risk of type 2 diabetes has been mostly unexplored. Our goal was therefore to search for parent-of-origin effects (POE) among type 2 diabetes loci in families. Methods: Families from the Botnia study (n = 4,211, 1,083 families) were genotyped for 72 single-nucleotide polymorphisms (SNPs) associated with type 2 diabetes and assessed for POE on type 2 diabetes. The family-based Hungarian Transdanubian Biobank (HTB) (n = 1,463, >135 families) was used to replicate SNPs showing POE. Association of type 2 diabetes loci within families was also tested. Results: Three loci showed nominal POE, including the previously reported variants in KCNQ1, for type 2 diabetes in families from Botnia (rs2237895: pPOE = 0.037), which can be considered positive controls. The strongest POE was seen for rs7578597 SNP in the THADA gene, showing excess transmission of the maternal risk allele T to diabetic offspring (Botnia: pPOE = 0.01; HTB pPOE = 0.045). These data are consistent with previous evidence of allelic imbalance for expression in islets, suggesting that the THADA gene can be imprinted in a POE-specific fashion. Five CpG sites, including those flanking rs7578597, showed differential methylation between diabetic and non-diabetic donor islets. Conclusions/interpretation: Taken together, the data emphasise the need for genetic studies to consider from which parent an offspring has inherited a susceptibility allele.
  •  
6.
  • van de Vegte, Yordi, et al. (författare)
  • Genetic insights into resting heart rate and its role in cardiovascular disease
  • 2023
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The genetics and clinical consequences of resting heart rate (RHR) remain incompletely understood. Here, the authors discover new genetic variants associated with RHR and find that higher genetically predicted RHR decreases risk of atrial fibrillation and ischemic stroke. Resting heart rate is associated with cardiovascular diseases and mortality in observational and Mendelian randomization studies. The aims of this study are to extend the number of resting heart rate associated genetic variants and to obtain further insights in resting heart rate biology and its clinical consequences. A genome-wide meta-analysis of 100 studies in up to 835,465 individuals reveals 493 independent genetic variants in 352 loci, including 68 genetic variants outside previously identified resting heart rate associated loci. We prioritize 670 genes and in silico annotations point to their enrichment in cardiomyocytes and provide insights in their ECG signature. Two-sample Mendelian randomization analyses indicate that higher genetically predicted resting heart rate increases risk of dilated cardiomyopathy, but decreases risk of developing atrial fibrillation, ischemic stroke, and cardio-embolic stroke. We do not find evidence for a linear or non-linear genetic association between resting heart rate and all-cause mortality in contrast to our previous Mendelian randomization study. Systematic alteration of key differences between the current and previous Mendelian randomization study indicates that the most likely cause of the discrepancy between these studies arises from false positive findings in previous one-sample MR analyses caused by weak-instrument bias at lower P-value thresholds. The results extend our understanding of resting heart rate biology and give additional insights in its role in cardiovascular disease development.
  •  
7.
  • Abdulla, Maysaa, et al. (författare)
  • PD-L1 and IDO1 are potential targets for treatment in patients with primary diffuse large B-cell lymphoma of the CNS
  • 2021
  • Ingår i: Acta Oncologica. - : Taylor & Francis. - 0284-186X .- 1651-226X. ; 60:4, s. 531-538
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundProgrammed cell death 1 (PD-1) and its ligands PD-L1 and PD-L2, as well as Indoleamine 2,3-deoxygenase (IDO1) can be expressed both by tumor and microenvironmental cells and are crucial for tumor immune escape. We aimed to evaluate the role of PD-1, its ligands and IDO1 in a cohort of patients with primary diffuse large B-cell lymphoma of the CNS (PCNSL).Material and methodsTissue microarrays (TMAs) were constructed in 45 PCNSL cases. RNA extraction from whole tissue sections and RNA sequencing were successfully performed in 33 cases. Immunohistochemical stainings for PD-1, PD-L1/paired box protein 5 (PAX-5), PD-L2/PAX-5 and IDO1, and Epstein-Barr virus encoding RNA (EBER) in situ hybridization were analyzed.ResultsHigh proportions of PD-L1 and PD-L2 positive tumor cells were observed in 11% and 9% of cases, respectively. High proportions of PD-L1 and PD-L2 positive leukocytes were observed in 55% and 51% of cases, respectively. RNA sequencing revealed that gene expression of IDO1 was high in patients with high proportion of PD-L1 positive leukocytes (p = .01). Protein expression of IDO1 in leukocytes was detected in 14/45 cases, in 79% of these cases a high proportion of PD-L1 positive leukocytes was observed. Gene expression of IDO1 was high in EBER-positive cases (p = .0009) and protein expression of IDO1 was detected in five of six EBER-positive cases.ConclusionOur study shows a significant association between gene and protein expression of IDO1 and protein expression of PD-L1 in the tumor microenvironment of PCNSL, possibly of importance for prediction of response to immunotherapies.
  •  
8.
  •  
9.
  • Albrechtsen, A., et al. (författare)
  • Exome sequencing-driven discovery of coding polymorphisms associated with common metabolic phenotypes
  • 2013
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 56:2, s. 298-310
  • Tidskriftsartikel (refereegranskat)abstract
    • Human complex metabolic traits are in part regulated by genetic determinants. Here we applied exome sequencing to identify novel associations of coding polymorphisms at minor allele frequencies (MAFs) > 1% with common metabolic phenotypes. The study comprised three stages. We performed medium-depth (8x) whole exome sequencing in 1,000 cases with type 2 diabetes, BMI > 27.5 kg/m(2) and hypertension and in 1,000 controls (stage 1). We selected 16,192 polymorphisms nominally associated (p < 0.05) with case-control status, from four selected annotation categories or from loci reported to associate with metabolic traits. These variants were genotyped in 15,989 Danes to search for association with 12 metabolic phenotypes (stage 2). In stage 3, polymorphisms showing potential associations were genotyped in a further 63,896 Europeans. Exome sequencing identified 70,182 polymorphisms with MAF > 1%. In stage 2 we identified 51 potential associations with one or more of eight metabolic phenotypes covered by 45 unique polymorphisms. In meta-analyses of stage 2 and stage 3 results, we demonstrated robust associations for coding polymorphisms in CD300LG (fasting HDL-cholesterol: MAF 3.5%, p = 8.5 x 10(-14)), COBLL1 (type 2 diabetes: MAF 12.5%, OR 0.88, p = 1.2 x 10(-11)) and MACF1 (type 2 diabetes: MAF 23.4%, OR 1.10, p = 8.2 x 10(-10)). We applied exome sequencing as a basis for finding genetic determinants of metabolic traits and show the existence of low-frequency and common coding polymorphisms with impact on common metabolic traits. Based on our study, coding polymorphisms with MAF above 1% do not seem to have particularly high effect sizes on the measured metabolic traits.
  •  
10.
  • Andersson, Sofia A, et al. (författare)
  • Reduced insulin secretion correlates with decreased expression of exocytotic genes in pancreatic islets from patients with type 2 diabetes.
  • 2012
  • Ingår i: Molecular and Cellular Endocrinology. - : Elsevier BV. - 1872-8057 .- 0303-7207. ; 364:1-2, s. 36-45
  • Tidskriftsartikel (refereegranskat)abstract
    • Reduced insulin release has been linked to defect exocytosis in β-cells. However, whether expression of genes suggested to be involved in the exocytotic process (exocytotic genes) is altered in pancreatic islets from patients with type 2 diabetes (T2D), and correlate to insulin secretion, needs to be further investigated. Analysing expression levels of 23 exocytotic genes using microarray revealed reduced expression of five genes in human T2D islets (χ(2)=13.25; p<0.001). Gene expression of STX1A, SYT4, SYT7, SYT11, SYT13, SNAP25 and STXBP1 correlated negatively to in vivo measurements of HbA1c levels and positively to glucose stimulated insulin secretion (GSIS) in vitro in human islets. STX1A, SYT4 and SYT11 protein levels correspondingly decreased in human T2D islets. Moreover, silencing of SYT4 and SYT13 reduced GSIS in INS1-832/13 cells. Our data support that reduced expression of exocytotic genes contributes to impaired insulin secretion, and suggest decreased expression of these genes as part of T2D pathogenesis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 60
Typ av publikation
tidskriftsartikel (54)
konferensbidrag (4)
annan publikation (1)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (55)
övrigt vetenskapligt/konstnärligt (5)
Författare/redaktör
Ladenvall, Claes (46)
Groop, Leif (37)
Lyssenko, Valeriya (18)
McCarthy, Mark I (18)
Lind, Lars (15)
Prokopenko, Inga (15)
visa fler...
Salomaa, Veikko (12)
Gieger, Christian (12)
Isomaa, Bo (11)
Laakso, Markku (11)
Boehnke, Michael (11)
Ingelsson, Erik (11)
Tuomilehto, Jaakko (11)
Tuomi, Tiinamaija (10)
Peters, Annette (10)
Metspalu, Andres (10)
Kuusisto, Johanna (9)
Orho-Melander, Marju (9)
Mahajan, Anubha (9)
Fadista, Joao (8)
Perola, Markus (8)
Ripatti, Samuli (8)
Boomsma, Dorret I. (8)
Jula, Antti (7)
Jern, Christina, 196 ... (7)
Jood, Katarina, 1966 (7)
Wareham, Nicholas J. (7)
Mohlke, Karen L (7)
Willemsen, Gonneke (7)
Palmer, Colin N. A. (7)
Dupuis, Josée (7)
Meigs, James B. (7)
Nilsson, Peter (6)
Ladenvall, Claes, Ph ... (6)
Blomstrand, Christia ... (6)
Melander, Olle (6)
Deloukas, Panos (6)
Almgren, Peter (6)
Kravic, Jasmina (6)
van Duijn, Cornelia ... (6)
Langenberg, Claudia (6)
Pedersen, Nancy L (6)
Mangino, Massimo (6)
Kaprio, Jaakko (6)
Barroso, Ines (6)
Spector, Timothy D (6)
Kovacs, Peter (6)
Altshuler, David (6)
Morris, Andrew D (6)
Wilson, James G. (6)
visa färre...
Lärosäte
Lunds universitet (39)
Uppsala universitet (20)
Karolinska Institutet (13)
Göteborgs universitet (9)
Umeå universitet (4)
Chalmers tekniska högskola (2)
visa fler...
Örebro universitet (1)
Linköpings universitet (1)
visa färre...
Språk
Engelska (60)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (50)
Naturvetenskap (3)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy